
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/

Exploring the Explainable Aspects and Performance of a Learnable Evolutionary
Multiobjective Optimization Method

© 2023 the Authors

Published version

Misitano, Giovanni

Misitano, G. (2024). Exploring the Explainable Aspects and Performance of a Learnable
Evolutionary Multiobjective Optimization Method. ACM Transactions on Evolutionary Learning
and Optimization, 4(1), 1-39. https://doi.org/10.1145/3626104

2024

4

Exploring the Explainable Aspects and Performance of a

Learnable Evolutionary Multiobjective Optimization

Method

GIOVANNI MISITANO, University of Jyväskylä, Finland

Multiobjective optimization problems have multiple conflicting objective functions to be optimized simulta-

neously. The solutions to these problems are known as Pareto optimal solutions, which are mathematically

incomparable. Thus, a decision maker must be employed to provide preferences to find the most preferred

solution. However, decision makers often lack support in providing preferences and insights in exploring the

solutions available.

We explore the combination of learnable evolutionary models with interactive indicator-based evolution-

ary multiobjective optimization to create a learnable evolutionary multiobjective optimization method. Fur-

thermore, we leverage interpretable machine learning to provide decision makers with potential insights

about the problem being solved in the form of rule-based explanations. In fact, we show that a learnable

evolutionary multiobjective optimization method can offer advantages in the search for solutions to a multi-

objective optimization problem. We also provide an open source software framework for other researchers

to implement and explore our ideas in their own works.

Our work is a step toward establishing a new paradigm in the field on multiobjective optimization: explain-

able and learnable multiobjective optimization. We take the first steps toward this new research direction and

provide other researchers and practitioners with necessary tools and ideas to further contribute to this field.

CCS Concepts: • Theory of computation→ Bio-inspired optimization; • Computing methodologies

→Rule learning; • Information systems→Decision support systems; • Software and its engineering

→ Open source model;

Additional Key Words and Phrases: Multiobjective optimization, evolutionary multiobjective optimization,

learnable evolutionary models, explainable artificial intelligence

ACM Reference format:

Giovanni Misitano. 2024. Exploring the Explainable Aspects and Performance of a Learnable Evolutionary

Multiobjective Optimization Method. ACM Trans. Evol. Learn. 4, 1, Article 4 (February 2024), 39 pages.

https://doi.org/10.1145/3626104

1 INTRODUCTION

The field of Multiobjective Optimization (MOO) [Miettinen 1999; Sawaragi et al. 1985; Steuer
1989] specializes in solving problems with multiple conflicting objective functions with various
tradeoffs. The objective functions depend on decision variables, which are often real valued. MOO
problems have many mathematically incomparable optimal solutions known as Pareto Optimal

Author’s address: G. Misitano, Faculty of Information Technology, University of Jyväskylä, P. O. Box 35 (Agora), Jyväskylä,

Finland, 40014; e-mail: giovanni.a.misitano@jyu.fi.

This work is licensed under a Creative Commons Attribution-ShareAlike International 4.0 License.

© 2024 Copyright held by the owner/author(s).

2688-3007/2024/02-ART4

https://doi.org/10.1145/3626104

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

https://orcid.org/0000-0002-4673-7388
https://doi.org/10.1145/3626104
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3626104
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626104&domain=pdf&date_stamp=2024-02-23

4:2 G. Misitano

(PO) solutions. Because the solutions are incomparable without additional information, we must
employ the aid of a Decision Maker (DM) with domain expertise to identify the most preferred
solution. The DM provides preferences, which are utilized to find the best possible solution among
the PO ones. MOO problems are an omnipresent kind of problem in the real world, and it is there-
fore important that we are not only able to understand and solve these problems, but to also provide
the adequate decision support to DMs so that they may find the most preferred solution to make
the best possible decisions.

The challenge of solving MOO problems is twofold. First, there is the computational and
mathematical aspect of finding PO solutions. There are various approaches in this regard, such
as scalarization-based (see, e.g., [Miettinen 1999]) and Evolutionary Algorithms (EAs) (see,
e.g., [Branke et al. 2008; Coello et al. 2007]). By scalarizing a MOO problem, its objective func-
tions are aggregated into one and the problem is reduced to a single-objective optimization prob-
lem, a scalarized problem, using some scalarization function. Then, the scalarized problem can be
optimized utilizing appropriate, single-objective optimizers. The scalarization function must be se-
lected carefully to guarantee the resulting solution to be PO [Miettinen 1999; Sawaragi et al. 1985].
In turn, EAs work by iteratively evolving a population of solution candidates, gradually improving
the population. EAs are based on heuristics inspired by Darwinian evolution and cannot guarantee
the Pareto optimality of the solutions, but they are able to produce multiple, near-optimal solutions,
whereas by scalarizing a MOO problem one can find a single, but more accurate solution—under
certain assumptions even guaranteed to be PO [Miettinen 1999; Sawaragi et al. 1985]. EAs may
also be used to solve scalarized MOO problems. In addition to scalarization-based and population-
based methods, other types of set approximation methods like the ones discussed in the work of
Talbi et al. [2012] exist as well, but are not considered in our current work.

The second challenge of solving MOO problems lies in how to incorporate and utilize prefer-
ences provided by the DM to find the most preferred solution. Preferences can be incorporated in
the solution process in three ways [Hwang and Masud 1979; Miettinen 1999]: before (a priori) or
after (a posteriori) the optimization process, or interactively during the optimization process. Meth-
ods implementing the latter are known as interactive MOO methods [Miettinen 1999]. The main
drawbacks of providing preferences before or after the optimization process are, respectively, the
possible lack of knowledge the DM has about the characteristics of the solutions available, such as
the ranges of the objective function values and the tradeoffs between them, and the (often) over-
whelming amount of available solutions to choose from. Naturally, if a DM is very familiar with
the MOO problem being solved, then these drawbacks are diminished. However, interactive MOO
methods allow the DM to explore the problem by providing preferences iteratively and seeing what
kind of solutions are available. This allows the DM to learn about the MOO problem [Miettinen
et al. 2008]. Interactive MOO methods require little in terms of prior knowledge the DM has about
the problem, and they also vary in the type of preferences they accept, how the preferences are
incorporated, and what kind of information is shown to the DM [Afsar et al. 2021; Miettinen et al.
2016; Xin et al. 2018]. That being said, DMs often lack support when providing preferences in inter-
active MOO, which is still an open research question in the study of interactive methods [Belton
et al. 2008; Wang et al. 2016].

Recently, it has been argued that interactive MOO methods can be seen as black-boxes by the
DM [Misitano et al. 2022]: preferences go in the method which then generates new solutions,
but how? To remedy this, explainability was explored as a potential solution to provide the DM
with additional insights about how a scalarization-based interactive method maps preferences to
generate new solutions in the work of Misitano et al. [2022]. It was shown that explainability can
have the potential to support the DM in providing new preferences and reach their most preferred
PO solution in fewer iterations.

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

Exploring the Explainable Aspects and Performance of a LEMOO Method 4:3

In our present work, we will explore explainability in the context of EAs—specifically indicator-

based EAs—for solving MOO problems combining them with Learnable Evolutionary Models

(LEMs) [Michalski 2000]. LEMs are a class of optimization algorithms that combine EAs with
Machine Learning (ML) models. The idea is to use heuristics based on Darwinian evolution in
a so-called Darwinian mode to improve a population of solutions, then occasionally switch to a
so-called learning mode where ML is utilized to learn a hypothesis describing what characterizes a
desired solution. This hypothesis can then be used to further generate potentially desired solutions
to add to the population. A LEM algorithm then switches between a Darwinian and learning mode
iteratively. In our current work, we utilize an explainable and interpretable ML model in a LEM
to solve MOO problems and utilize the explanations to provide new insights to the DM about the
solutions computed for a MOO problem by explaining the connection between decision variables
and objective function values for solutions that are congruent with preferences expressed by the
DM. As a proof of concept, we develop a new interactive MOO method based on the idea of LEMs,
which utilizes an indicator-based EA and an explainable ML model.

It is safe to assume for a DM to be mainly interested in the objective function values of a MOO
problem [Miettinen 1999]—it is often the case that the number of objective functions in a problem is
much lower than the number of decision variables, and the problem is assumed to be modeled in a
manner where the objective functions represent important criteria to the DM. However, a DM can
often also be interested in some of the decision variable values of the computed solutions [Hakanen
et al. 2011, 2013; Kania et al. 2022]. We show that explainability can be leveraged in this aspect as
well by providing DMs with additional insights about the ranges of the decision variable values
in the proximity of a preferred solution. From a design perspective, where the decision variable
values of a problem can also matter, insight about the variables can lead to better decision making,
such as by helping DMs discover new designs and practical considerations of the solutions [Deb
and Srinivasan 2006; Ray et al. 2022; Smedberg and Bandaru 2022]. Our proposed approach should
be of special interest to more technical DMs, such as engineers, who are more accustomed with the
implications of different decision variable values in addition to being familiar with the objective
function values.

We are the first to explore the explainable aspects in solving MOO problems with LEMs. We
provide simple, rule-based explanations to help a DM make a connection between the variables
and objective functions in solutions found near a point of interest (from the perspective of the DM)
to a MOO problem. To achieve this goal, we implement our own explainable method for solving
MOO problems based on LEMs and a simple indicator-based EA. We also provide open source
software for others to implement and explore their own similar methods. In our work, we explore
the contribution of the ML model used to the performance of our method in finding approximate
PO solutions. Based on these contributions, we pave the way toward a new subfield in MOO:
Explainable and Learnable Evolutionary Multiobjective Optimization (XLEMOO).

To summarize, the contributions of our present work are the following:

(1) Following the core idea of LEMs, we combine an indicator-based Evolutionary Multiobjec-

tive Optimization (EMO) with an interpretable ML model to produce an XLEMOO method.
(2) We explore the performance of our Learnable Evolutionary Multiobjective Optimiza-

tion (LEMOO) method in its ability to find optimal solutions. We study this by varying
parameters that are specific to the LEM part of our approach.

(3) We demonstrate and discuss the potential benefits of the explanations produced by the in-
terpretable ML model to a DM in our LEMOO method in a showcase as a proof of concept.

(4) We provide an open source Python framework—the XLEMOO framework—to implement
and explore further ideas related to XLEMOO.

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

4:4 G. Misitano

The purpose of our work is to show that by combining interpretable ML models with EAs into a
new method, we can potentially achieve an overall better performance of the method (compared to
the EA part alone) and be able to provide valuable explanations regarding the connection between
decision variables and objective functions values to a DM. To the best of our knowledge, in the
context of applying LEMs to MOO, we are also the first to publish the software used and the results
of the experiments conducted in a manner that allows others to reproduce our work and build on
top of it promoting the openness and renewal of science.

This article is structured as follows. In Section 2, we present the necessary theory and back-
ground information, and give references to the most relevant works related to our work. In
Section 3, we present the general structure of a XLEMOO method and briefly discuss the XLEMOO
framework. In Section 4, we explore the impact of ML in our LEMOO method from a performance
point of view by varying parameters specific to the LEM part of our method. We then move to
Section 5, where we present a showcase on how the insights emerging from the explainability of
our LEMOO method can help a DM in an interactive MOO context, where a DM provides prefer-
ences iteratively during the optimization process. We present the results and implications of the
experiments and the showcase in Section 6, where we also discuss the further potential of explain-
ability in the context of LEMOO. The article is then concluded with Section 7, where we draw the
main conclusions of our work and propose future research directions in the field of XLEMOO.

2 BACKGROUND

In this section, we provide the background information necessary for the rest of the article. We
start with Sections 2.1 and 2.2, where we briefly present the basics of (interactive) MOO and EMO
focusing on indicator-based methods, respectively. In Section 2.3, we present the main ideas behind
LEMs and how these have been utilized in MOO in the past. Furthermore, we briefly discuss the
basics of Explainable Artificial Intelligence (XAI) and ML in Section 2.4. We conclude with
Section 2.5, where we will review the most notable past works in which explainability has been
explored in the context of MOO.

2.1 Concepts of MOO

A MOO problem can be defined as follows:

minimize F (x) = (f1 (x), f2 (x), . . . , fk (x)),

s.t. x ∈ X ⊂ Rn ,
(1)

where f1, f2, . . . , fk are (k ≥ 2) objective functions, x = (x1,x2, . . . ,xn)T ∈ Rn is a decision vector

of n decision variables, and X is the set of feasible decision vectors. We assume the objective func-
tions to be real valued—that is, fi : Rn → Rk . The feasible set is often defined by box-constraints
on the decision variables (i.e., upper and lower bounds) or constraint functions, or both. A feasi-
ble solution to a MOO problem (1) is one that belongs to the feasible set X . When all k objective
functions are evaluated at some feasible decision vector x, the result is an objective vector z, with
components zi = fi (x) for i = i, . . . ,k , which forms the set of feasible objective vectors Z . We
assume all objective functions to be minimized without loss in generality—a function to be maxi-
mized can be converted to a minimized function by multiplying it by −1.

While objective vectors cannot be fully compared on a mathematical basis alone, we can define
the concept of dominance to help us order objective vectors. Suppose we have two feasible decision
vectors x

1 and x
2 with respective objective vectors z

1 and z
2. Now, x

1 is said to dominate x
2 if, and

only if, z1
i ≤ z2

i for all i = 1, . . . ,k and z1
j < z2

j for at least some j = 1, . . . ,k . We can then define

the set of PO solutions as the subset of feasible solutions, which when evaluated will result in a

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

Exploring the Explainable Aspects and Performance of a LEMOO Method 4:5

set of mutually nondominated solutions so that no other feasible solution exists that dominates
any of the solutions in the set. The set of objective vectors resulting from evaluating the set of PO
solutions is the set of PO objective vectors ZPareto, which we refer to as a Pareto set.

To characterize the Pareto set, we define the concepts of ideal and nadir points. When minimiz-
ing each objective function, the ideal point z

∗ represent the lower bounds of the Pareto set. The
ideal point can be computed by minimizing each objective function in a MOO problem (1) indi-
vidually. Similarly, the nadir point z

nadir represents the upper bounds of the Pareto set. However,
computing the nadir point would require knowledge on the whole and true extent of the Pareto
set, which is generally unknown. Several methods exist to approximate the nadir point (e.g., [Be-
nayoun et al. 1971; Deb and Miettinen 2009; Deb et al. 2010]).

As mentioned, a MOO problem (1) can be scalarized using a scalarization function s : Rk →
R that transforms the original MOO problem into a single-objective optimization problem. The
achievement scalarizing function [Wierzbicki 1980, 1982] is an example of a scalarization function.
The single-objective optimization problem resulting from utilizing the achievement scalarizing
function is defined as

min
x∈X

sASF (F (x), z̄, z∗∗, znadir) = min
x∈X

max
i=1, ...,k

⎡
⎢
⎢
⎢
⎢
⎣

fi (x) − z̄i

znadir
i − z∗∗i

⎤
⎥
⎥
⎥
⎥
⎦

+ ρ
k∑

i=1

fi (x)

znadir
i − z∗∗i

, (2)

where z̄ = (z̄1, . . . , z̄k) is a reference point, a vector consisting of aspiration levels, which are pro-
vided by a DM; z

∗∗ is a utopian point, defined as z∗∗i = z∗i − ε , for i = 1 . . .k , where ε is a small
positive scalar; and ρ is also a small positive scalar value. The aspiration levels in the reference
point represent objective function values a DM wishes to achieve.

The scalarization function in (2) is also able to incorporate the preferences of a DM in the op-
timization process in the form of aspiration levels in the reference point. As said, the aspiration
levels represent objective function values the DM wishes to achieve. When solved, (2) results in
a PO solution with an objective vector that is projected to the closest PO solution according to
the Tchebycheff [Miettinen 1999] distance of its components to the aspiration levels in the ref-
erence point. By utilizing different reference points z̄ in (2), we can find different solutions. The
summation term in (2) is known as an augmentation term that assures the Pareto optimality of the
solution found—actually, so-called proper Pareto optimality (for details, see, e.g., [Miettinen 1999;
Wierzbicki 1982]). Many scalarizing functions exist with different properties (see, e.g., [Miettinen
and Mäkelä 1999, 2002]).

2.2 Evolutionary Multiobjective Optimization

EMO methods [Branke et al. 2008; Coello et al. 2007] take inspiration from Darwinian evolution
to evolve a set (a population) of solutions (referred to as individuals) concurrently over multiple
generations, gradually improving the overall fitness of the population. EMO methods can be di-
vided into three subcategories: indicator-based [Zitzler and Künzli 2004], domination-based [Deb
et al. 2002], and decomposition-based [Zhang and Li 2007] methods. Although EMO methods can
generate multiple solutions at the same time, there is no guarantee for the solutions to be PO due
to the heuristic nature. This is why EMO methods can be considered to generate, at best, only
approximations of PO solutions and sets. Different EMO methods are more suitable for different
problems and may accommodate for different preference information as well. For recent reviews
on different EMO methods, see, for example, the work of Antonio and Coello [2017] and Chugh
et al. [2019].

We focus our current study on an indicator-based method, which evolves a population of so-
lutions over generations utilizing three simple evolutionary operators: crossover, mutation, and

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

4:6 G. Misitano

selection. The crossover, or mating, operator combines different individuals to form new ones, the
mutation operator applies random mutations to the individuals, and the selection operator is used
to select the individuals with a good fitness. In indicator-based methods, a quality (or performance)
indicator is used in the selection step to select individuals from the population with good fitness
values. The selected individuals then continue to the next generation.

By properly selecting the quality indicator, we can determine what kind of solutions the EMO
algorithm will strive to find. Usually, indicators measure the quality of the whole set of found
solutions by either comparing the set to another set or by producing an absolute measure of the
quality of an individual set [Emmerich and Deutz 2018]. The fitness of a single solution is then
determined by its contribution to the overall value of the indicator. When preference information
is available from a DM, the fitness of single solutions can be determined directly by utilizing a
scalarizing function, such as the one shown in (2).

When incorporating preference information in the indicator used, it is possible to focus the
search for solutions in an indicator-based EMO method to a subset of the approximate PO solutions
that is of special interest to a DM. In this case, there is no need to try to approximate the whole PO
set. Furthermore, when the DM is allowed to change the preferences and provide them iteratively
between the executions of the EMO method, we have an interactive method. From a decision-
making perspective, interactive methods are important since they allow the DM to learn about
the available solutions and the feasibility of their own preferences [Miettinen et al. 2008]. The
details of the proposed interactive indicator-based EMO method that incorporates explainability
are further fleshed out in Sections 3 and 4.

2.3 Learnable Evolutionary Models

LEMs are a special breed of EAs where the heuristic nature of EAs is augmented with the more
deterministic nature of ML methods. Proposed originally in the work of Michalski [2000], LEMs
are claimed to help an evolutionary process converge faster, as in fewer iterations, to an optimal
solution. Leveraging the power of ML is made possible in EAs because of the large number of
individuals generated during an evolutionary process. This allows an ML model to distinguish
between good and bad individuals and formulate a hypothesis on how to further generate new,
usually good individuals. This process can boost the overall search for optimal solutions by diver-
sifying the population and by finding better individuals. In the original work [Michalski 2000], it
was also suggested that the evolutionary part of a LEM may be replaced by ML, but we will not
explore this aspect in our current work. More details on how a LEM works are given in Section 3.1.

In the past, LEMs have been applied for solving MOO problems. We next describe some of these
works. Perhaps the earliest work in which LEMs have been applied for solving MOO problems
was presented in by Jourdan et al. [2005], where a LEM was applied to solve a MOO problem in
water system design. The authors were able to show that a LEMOO method offered notable per-
formance advantages when compared to NSGA-II [Deb et al. 2002]. In the work of Moradi and
Mirzaei [2016], a LEMOO method was merged with a knowledge base to successfully automate
complementary metal-oxide semiconductor (CMOS) analog circuit design. The inclusion of a LEM
was shown to considerably decrease the number of circuit evaluations. Likewise, in the work of
Moradi [2018], LEMs were applied for solving a multiobjective robot path-planning problem, and it
was shown that the approach led to a higher hypervolume and overall set coverage of the evolved
population when compared to other similar methods. The same author further applied their ap-
proach to a vehicle routing problem with stochastic demand with similar results [Moradi 2019].
Solving MOO vehicle routing problems was also explored in the work of Niu et al. [2021] with
results indicating better performance in terms of computation time and the quality of solutions
when compared to the state-of-the art EMO methods.

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

Exploring the Explainable Aspects and Performance of a LEMOO Method 4:7

Although the listed works have been successful in applying LEMs to solve MOO problems, none
of the works provide the software for implementing and applying LEMs to solve MOO problems,
nor do they provide the data of the experiments that were run. This not only raises issues with
the replicability of the results but also makes it very cumbersome for other researchers and prac-
titioners to apply LEMOO in their own works.

In our work, we provide an open source software framework for implementing and experiment-
ing with LEMOOs as an extension of the DESDEO software framework [Misitano et al. 2021] for
MOO, and we make the data and means to reproduce the experiments shown in later sections of
our paper openly available. We also provide insights for researchers and practitioners alike to start
building and experimenting with their own implementations of LEMOO methods.

2.4 ML and XAI

ML [Bishop 2006] is the study and application of software that can learn from data or its sur-
roundings, or both, to make conclusions about new observations. Often, ML is used to predict
new information, examples of which include the prediction of skin cancer in patients [Esteva et al.
2017] or the fault diagnosis in rotating machinery [Liu et al. 2018], for instance. However, when
used in decision support, ML can be problematic because of its black-box nature. The opacity re-
sulting from this black-box nature is not desirable if we wish to make transparent and justifiable
decisions. It is an unfortunate fact that the ML model complexity correlates positively with its
predictive power [Gunning and Aha 2019], but exceptions to this rule do exist [Lipton 2018]. The
more complex a model is, the harder it is generally to interpret and understand.

The field of XAI [Kamath and Liu 2021; Molnar 2022] focuses on the study of the explainable
aspects of Artificial Intelligence (AI), including ML, and the development of XAI methods. Fo-
cusing on explainable ML, there are two main ways that explainability can be incorporated into an
ML model. First, there is the model agnostic approach, which focuses on methods that are able to
explain any ML model. This is achieved by just observing the input and output of an ML model and
trying to build an understanding on the mapping between these two. Examples of model agnostic
explainability are SHAP values [Lundberg and Lee 2017] and LIME [Ribeiro et al. 2016]. Another
approach to incorporate explainability in ML is using inherently interpretable ML models. These
include, but are not limited to, rule- and tree-based models. Since rules and trees are easy to inter-
pret, there is no need to utilize external tools; instead, the rules and trees can be directly observed
to build an understanding on how the ML model makes predictions. Nevertheless, sometimes even
inherently interpretable ML models can become too complex to be feasibly interpreted by a hu-
man. This is the case with decision trees with a depth in the hundreds, for instance. As argued in
the work of Lipton [2018], model interpretability is not a monolithic concept; it also depends on
the specific model itself. For reviews on recent advancements in explainable ML and XAI methods,
see, for example, the work of Arrieta et al. [2020] and Linardatos et al. [2020].

In our work, we utilize skope-rules [Goix et al. 2020] as an ML model to learn highly inter-
pretable, and thus explainable, rule sets. Skope-rules utilize an ensemble of decision trees to learn
with a high precision instances of different classes. The trees are then reduced into simple and
interpretable IF...THEN... rules. For example, if skope-rules have been applied to learn and pre-
dict a binary classification (classes 0 or 1) on two real-valued variables a1 and a2 ranging from 1
to 10, then a learned rule set could look, for instance, as follows:

RULE 1: IF a1 < 8.2 AND a2 > 1.3 THEN PREDICT 1,
RULE 2: IF a1 > 5.5 AND a1 < 6.3 AND a2 < 1.4 THEN PREDICT 1,
RULE 3: IF a2 > 1.1 THEN PREDICT 1.

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

4:8 G. Misitano

Notice that the class of 0 is assumed to hold when no rules apply to an observed sample. Each rule
is also associated with a precision, which measures how many samples in the training dataset each
rule applies to. This precision ranges from 0 to 1, where 1 means a rule applies to all samples and
0 that it applies to none. For example in the preceding first rule, when a1 is less than or equal to
8.2, and a2 is greater than 1.3, then the predicted class for the instance is 1. Skope-rules have been
applied successfully in the literature to extract accurate rules to increase the explainability of ML
applications, for example, in the work of Bologna [2021] and Narteni et al. [2021].

From a societal perspective, explainability is an important concept that must be taken into ac-
count when utilizing ML in decision support. The European Union’s General Data Protection Reg-
ulation (GDPR) includes the notion for humans to have a right to an explanation (Recital 711) in the
context of algorithmic decision support, including the use of AI and ML [Goodman and Flaxman
2017].

2.5 Explainability in MOO

Since MOO methods serve primarily as decision support tools, it is no surprise that explainability
has recently begun to attract attention in MOO as well. Generally, we may speak of explainable

MOO when talking about MOO methods with incorporated explainability. In what follows, we
briefly review how explainability has been applied to MOO in the literature.

In the work of Wang et al. [2016], a MOO approach was utilized to build a movie recommenda-
tion system that accounts for both accuracy of the prediction and individual diversity oriented at
users. By taking into account the recommended items’ content (the movie genre) when defining
the lists’ diversity, the recommended lists were claimed to be explainable to the user. Explainability
was not, however, explored in the MOO method itself but rather in the problem formulation.

A framework to explain different policies in a multiobjective probabilistic planning setting was
presented in the work of Sukkerd et al. [2018]. The explanations of the policies were meant to in-
crease end users’ confidence in the different policies. The underlying preference structure leading
to each policy was also highlighted. The policy justification system was twofold: first, it described
which quality attributes had been considered in each policy, and second, it could argue why a
particular policy had been generated. The framework was able to argue why a certain policy was
superior, or at least not worse than another one. It achieved this goal by providing the user quali-
tative rather than numerical information.

So-called relationship explainable MOO was explored in the work of Zhan and Cao [2019]
through an actor-critic reinforcement learning method. The method was able to learn in a quantifi-
able way the inter-relationships between different objective functions by a novel concept, marginal

weights. By being quantifiable, the authors claimed that the relationships could also be explain-
able. This work focused on the study of the tradeoffs between the conflicting objectives in a MOO
problem.

Belief-rules were utilized in the work of Misitano [2020] to model the preferences of a DM during
an interactive MOO process. The preferences were modeled as a utility function, which was learned
through reinforcement learning by utilizing a belief-rule-based system as an ML model. Although
the rules learned by the model could be explained, the explainable aspect of the preference model
was only discussed as a potential of the proposed method.

Modeling the preferences of a DM was also explored by Corrente et al. [2021], where a
dominance-based rough set approach was used to model preferences based on the results of pair-
wise comparisons conducted by the DM. The preferences of the DM were then highly explainable

1https://www.privacy-regulation.eu/en/r71.htm

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

https://www.privacy-regulation.eu/en/r71.htm

Exploring the Explainable Aspects and Performance of a LEMOO Method 4:9

because they were modeled based on human interpretable rules. In this work, an interactive EMO
method was studied.

Lastly, in the work of Misitano et al. [2022], SHAP values [Lundberg and Lee 2017] were utilized
to explain the relationship between preferences and computed solutions in an interactive MOO
method. Based on the explanations produced, suggestions were also formulated to aid the DM in
providing further preferences to help them achieve a desired goal of improving a certain objective
function value in the solution. A small case study was also conducted to validate the explanations
and suggestions, and it was found that the suggestions helped the DM reach his best solution in
fewer iterations and with less guessing.

In our work, we provide to a DM insights about the connection between decision and objective
vectors. However, we do not claim to be the first ones to explore this connection. This concept
has been studied previously and has been shown to provide important information to a DM when
exploring and selecting solutions in a MOO context. For example, the concept of innovization

coined by Deb and Srinivasan [2006] leverages EMO to not only find optimal solutions but to also
help unveil new design principles in engineering problems. This unveiling is based on building
an understanding of the relationship between decision variables and objective functions. More
recent examples of connecting the decision variables and the objective functions to support better
decision making, can be found, for example, in the work of Ray et al. [2022] and Nagar et al. [2022].

Related to innovization, data-mining approaches have also been explored in the past to find
design patterns and to discover knowledge in MOO problems. Although these approaches have not
been explicitly referred to as explainable, these approaches address similar issues that explanations
do. These data-mining approaches have been surveyed in the work of Bandaru et al. [2017a], and
more recent advancements have been discussed in another work by Bandaru et al. [2017b]. Data
mining for knowledge discovery has also been studied very recently in an interactive MOO setting
as well in the work of Smedberg and Bandaru [2022].

To the best of our knowledge, our work is the first to build a connection between decision and
objective vectors by utilizing explainability in particular emerging from leveraging interpretable
ML in a LEM to interactively solve MOO problems. As the explanations vary depending on the
ML model used, the software framework we provide makes it readily possible to explore other
ML models as well leading to different explanations, which may serve different DMs better than
others.

3 LEMOO AND THE XLEMOO FRAMEWORK

In this section, we present the general structure of a LEMOO method in Section 3.1. We then
discuss the potential of explainability in LEMOO methods in Section 3.2. We conclude this section
by discussing the proposed XLEMOO software framework to implement LEMOO methods with
explainable ML models in Section 3.3. In the following sections, Sections 4 and 5, we utilize our
own LEMOO method implementation built according to the framework discussed here.

3.1 LEMOO

In LEMOO, a population of solutions to a MOO problem (1) is evolved in two modes: in a Dar-

winian mode and in a learning mode. In both modes, the population can be iteratively evolved
multiple times before switching to the other mode. The rules to determine when the mode should
be switched can be defined in multiple ways. The simplest is to iterate each mode for a fixed
number of times. Another option is to switch modes when a certain condition is met—for exam-
ple, the fitness of the overall population has improved past a certain threshold. In our present
work, for simplicity, we will switch modes after a fixed number of times. Let ND (Darwinian) and
N L (learning) be the numbers of iterations each mode is iterated before switching to the other

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

4:10 G. Misitano

Fig. 1. The basic flowchart of a LEMOO method.

mode. Furthermore, let NT be the total number of iterations the LEMOO method is iterated over.
Iterating a LEMOO method once means evolving the population in a Darwinian mode ND times
and in a learning mode N L times. This concept is further clarified in Figure 1. According to Figure 1,
a LEMOO method starts by initializing the population of solutions. This can be done by utilizing
Latin hypercube sampling [McKay et al. 2000], for instance. Whether a LEMOO method starts in
a Darwinian mode or a learning mode can also be changed, but we assume that each iteration
of a LEMOO method always starts in a Darwinian mode. Notice that if ND = 0 or N L = 0, the
respective mode is skipped completely. How often a LEMOO method switches from a Darwinian
mode to a learning mode is defined by the learning mode switching frequency. A switching fre-
quency defines the number of iterations in a Darwinian mode to be completed before switching
to a learning mode. For example, a switching frequency of 10 means that after 10 iterations in a
Darwinian mode, the LEMOO method switches to a learning mode, which is equivalent to setting
ND = 10. Next, we further discuss the Darwinian and learning modes.

3.1.1 Darwinian Mode. In a Darwinian mode, the population is evolved utilizing an EA method.
In our present work, we apply an indicator-based EMO that first performs a crossover operation
on the population, then mutates it, and finally selects according to an indicator the best individ-
uals to continue to the next generation. We utilize the scalarizing function in (2) as an indicator
and utilize it directly to compute the fitness of individuals in a population. We have chosen the
scalarizing function in (2) as the indicator because it incorporates preference information in the
form of a reference point, which can be provided by a DM. Thus, we are able to focus the evolution-

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

Exploring the Explainable Aspects and Performance of a LEMOO Method 4:11

ary process to find solutions that are interesting from the perspective of the DM. The scalarizing
function in (2) also allows us to fully order solutions in a population based on the fitness values.
Moreover, when utilizing (2) to compute the fitness, dominated solutions will always get a worse
fitness when compared to the fitness of nondominated solutions. We are also able to avoid deterio-
rating effects by utilizing the scalarizing function in (2) as an indicator in the selection step of our
indicator-based method, which effectively implements elitism. It is also important to emphasize
that in our approach, we do not try to approximate the whole set of PO solutions. Instead, we focus
the search on a small subset of PO solutions that are close to a reference point provided by a DM.

Other indicators may also be chosen to compute the fitness in the described approach, but we
have utilized the scalarizing function in (2) throughout our current work. The EA used in Dar-
winian mode may not necessarily have to be an indicator-based EMO. Nonetheless, whichever EA
is selected, the learning mode in LEMOO is characterized by its heuristic nature. The main flow of
a Darwinian mode is depicted in Figure 2 (left).

3.1.2 Learning Mode. The idea of a learning mode is to employ an ML method to learn charac-
teristics of good solutions. Following the original work [Michalski 2000], ML is utilized for binary
classification. Individuals are classified into high-performing and low-performing groups: an H-

group and an L-group, respectively (which we call an H/L splitting). These groups are then used as
training data for the ML model. This phase is known as hypothesis forming. After the ML method
has been trained to learn a hypothesis, it is then used to instantiate new individuals. The best of
the new individuals are then combined with the H-group of individuals to form a new population.
Individuals may also be discarded when forming a new population if the size of the population is
desired to be kept constant. Depending on the ML model employed, generating new individuals
can be either straightforward, such as in the case of rule-based and tree-based ML methods, or it
can be more complicated, such as in the case of neural networks. Other than binary classification
of the solutions is also possible. For instance, an ML model could be used to learn rules to sort
solutions into the different fronts in an EMO algorithm like NSGA-II [Deb et al. 2002]. The model
can then be used to generate new solutions with different ranks, possibly improving the variety
of the solutions, for example.

The crucial difference on how ML is utilized in LEMOO is that ML is not used to predict infor-
mation; instead, it is used to describe and generate new data. One important choice with binary
classification to be made when implementing a LEMOO method is to decide how the H- and L-
groups are chosen. One option, and the one utilized in our current work, is to pick a percentile
of the best and worst individuals based on their fitness values and form the H- and L-groups, re-
spectively. We have utilized the fitness values computed based on the scalarizing function in (2),
which reflects the preferences of a DM. Furthermore, we assume the top and bottom percentage
to be always equal and represented by an H/L splitting ratio or just H/L split. The main flow of a
learning mode is depicted in Figure 2 (right).

As seen in Figure 2, both Darwinian and learning modes act on a population to improve it. In
a Darwinian mode, new solutions are produced based on heuristics and the best solutions are
selected based on the solutions’ fitness values. However, in learning mode, a hypothesis is learned
that describes good individuals and it is used to generate new, potentially good individuals. When
the rule learned is interpretable by humans, such as in rule-based ML, we have also access to
explanations and explainability.

3.2 The Potential for Explainability in LEMOO

When properly selected, the ML model in a LEMOO method not only gives a boost to the per-
formance of the method but also makes the method explainable for a DM. Explainability is what
can really elevate LEMOO methods as decision support tools when compared to traditional EMO

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

4:12 G. Misitano

Fig. 2. A pictorial representation of how the two modes of LEM, Darwinian mode and learning mode, act on

the population of solutions to create a new population.

methods. For example, by selecting an inherently interpretable ML model, such as a rule-based
model, the rules generated by the model can be used to provide the DM with additional insights
about the solutions in a population. In our current work, we have decided to utilize skope-rules
as an interpretable form of ML because of its low computational demands and the interpretability
of the generated rules. Usually, the final population has the solutions with the best fitness values,
which makes the ML model trained in the last iteration of a LEMOO method of particular inter-
est from an explainability perspective. For example, if a rule-based ML model has been trained to
classify individuals in a population into H- and L-groups based on the individuals’ decision vec-
tors, the learned rules can then be shown to a DM to provide additional information about what
kind of decision variable values constitute a good solution. In our present work, we have utilized
the scalarizing function in (2), which incorporates a DM’s preferences. This means that the infor-
mation extracted from the rules will describe solutions that pertain to the DM’s preferences in
the decision space of the MOO problem being solved. As mentioned in Section 1, the DM may
be expected to be mainly interested in the objective function values of the solutions, but from a
design and engineering perspective, the decision variable values can play an important role in the
final decision making. We will explore the explanations produced by our LEMOO method in an
interactive setting in Section 5 to further clarify the added benefits of explainability. We will also
see that the information extracted from the rules can support a DM in providing new preferences
addressing an open question in the field of interactive MOO: How to support DMs in providing
preferences in the context of interactive MOO methods? How these rules may be generated is
discussed in Section 4.

We believe that, when leveraged, the explainable aspects of LEMOO methods can provide sim-
ilar insights to a DM between the decision variables and objective functions as discussed in
Section 1 (c.f. innovization). However, to the best of our knowledge, in none of the past works
has the potential for explainability been explored in LEMOO methods to provide a DM with

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

Exploring the Explainable Aspects and Performance of a LEMOO Method 4:13

additional insights about the decision vectors in the computed solutions. Furthermore, past works
exploring LEMOO have not provided software or other means for researchers and practitioners
alike to start exploring and implementing LEMOO methods. Through the experiments conducted
in Section 4, we will provide novel insights about LEMOO methods for others to consider when
building their own LEMOO methods, and we will show how explainability can be combined with
LEMOO methods to provide DMs with important insights about the MOO problem being solved.
Thus, we give rise to the new breed of XLEMOO methods, where explainability and LEMOO have
been combined to provide DMs with additional information to support better decision making
when applying EMO methods. To help others get started with their own implementations and ap-
plications of XLEMOO, we provide the open source software framework, the XLEMOO framework,
as a bedrock for researchers and practitioners to lean on in their future endeavors. This framework
is discussed next.

3.3 The XLEMOO Framework

The XLEMOO (software) framework allows users to readily build and apply LEMOO methods to
solve MOO problems as described in Section 3.1. The fitness function, the evolutionary operators
in a Darwinian mode, and ML model in a learning mode can be easily switched or replaced with
custom implementations. The user has also access to the various parameters present in Darwinian
and learning modes. Although the framework is primarily built to accustom indicator-based meth-
ods in a learning mode, switching to another kind of EMO method is possible with moderately
little effort. We have also taken care to document the framework, which eases its use. The frame-
work is implemented in the Python language, which is a widely used language in data analysis,
and the framework is aimed at users with a moderate proficiency in the language.

We have implemented the XLEMOO framework as open source software extending the DES-
DEO framework [Misitano et al. 2021]. The XLEMOO framework is available on GitHub2 and
Zenodo [Misitano 2023a]. To our knowledge, this is the first time a framework for implementing
LEMOO methods has been made available to the public. The framework is also suitable for solv-
ing single-objective optimization problems. On top of the documentation, we have also provided
a Jupyter [Kluyver et al. 2016] notebook for users to get quickly started utilizing the framework.3

In the following section, we give a detailed example of our own LEMOO method implemented in
the described XLEMOO framework. We have utilized the implementation to run experiments and
explore the effects of a learning mode on the performance of a LEMOO method, and also showcase
the potential of the explanations emerging from the learning mode of the LEMOO method when
the ML model utilized is interpretable.

4 IMPLEMENTATION AND EXPERIMENTS

In this section, we present in more detail the implementation of our LEMOO method utilizing the
XLEMOO framework discussed in Section 3. The implementation and experimental setup are pre-
sented in Section 4.1. Then, in Section 4.2, we use our implementation to study the effects of the
switching frequency and the H/L split in a learning mode on the performance of our method in
numerical experiments. Last, we explore the potential for explainability offered by our method and
discuss how the explanations (i.e., rule sets) have been generated in Section 4.3. The implementa-
tion discussed in this section is later utilized in Section 5 as an interactive MOO method, where
the added benefit of explainability to a DM is showcased. The reader interested in the practical
benefits offered by our method can skip this section and go to Section 5.

2https://github.com/gialmisi/XLEMOO/tree/article_v1.1
3https://xlemoo.readthedocs.io/en/article_v1.1/notebooks/Showcase.html

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

https://github.com/gialmisi/XLEMOO/tree/article_v1.1
https://xlemoo.readthedocs.io/en/article_v1.1/notebooks/Showcase.html

4:14 G. Misitano

4.1 General Setup

We implemented our LEMOO method utilizing the framework discussed in Section 3.3. The fol-
lowing parameters were chosen in the method’s Darwinian and learning modes. This is the same
implementation that is utilized later in Section 5.

4.1.1 Darwinian Mode. We implemented a simple indicator-based EMO algorithm with the
achievement scalarizing function (2) as the indicator (i.e., the fitness function), which computes
a fitness value for computed solutions. The lower the fitness value, the closer the solution is to a
supplied reference point z̄, reflecting how well a solution aligns with the preferences of a DM rep-
resented by the reference point. In (2), ρ and ε were set to 10−6 throughout the experiments. The
population size was set to be N pop = 50 to keep computation times feasible. The initial population
was initialized using Latin hypercube sampling to achieve a uniform initial coverage of different
decision vectors. Three evolutionary operators, as shown in Figure 2 (left), were chosen. For the
crossover operator, simulated binary crossover [Deb et al. 1995] was utilized with a crossover
probability of 1.0 and a crossover distribution parameter equal to 30; bounded polynomial muta-
tion [Deb et al. 1995] was used as the mutation operator with a mutation probability of 1

n
, where n

is the number of decision variables in a MOO problem, and a mutation distribution parameter equal
to 20; the selection operator was defined such that after crossover and mutation, the N pop best in-
dividuals were chosen to proceed to the next generation, keeping the population size constant in
each generation. The population from each generation was saved into an archive. With these op-
erators and their parameters, our method seemed to achieve acceptable results consistently, which
motivated their choice. We utilized the EMO operators implemented in the desdeo-emo package
[Misitano et al. 2021], version 1.4.1.

4.1.2 Learning Mode. We chose skope-rules implemented in the imodels Python pack-
age [Singh et al. 2021] as the ML model utilized in a learning mode to learn a rule set for binary
classification. Our choice was motivated by the computationally fast training of skope-rules, and
the interpretability of the generated rules (see Section 4.3 for examples of these rules). The mini-
mum rule precision considered was set to be 0.1, the maximum number of estimators to be learned
was set to 30, and we chose to bootstrap both samples and features. The rest of the skope-rules’
parameters were kept at their default values as defined in the imodels package, version 1.3.6. We
chose these values because we found them to work well from a performance perspective in our
case. To train the ML model, we considered the populations from all past generations computed
before the current learning mode iteration to maximize the available training data. Based on the
fitness values of the individuals, we chose a top (best fitness values) and bottom (worst fitness
values) percentage of the individuals from all past populations. Individuals with the best fitness
values were close to the reference point in (2), whereas individuals with the worst values were
farther away. When forming the H- and L-groups, only unique solution, based on their decision
variable values, were considered. This was done to boost the learning performance of the ML
model. Then, the ML model was trained to classify individuals into either a high-performing or a
low-performing group.

The trained skope-rules model was then used to instantiate γ inst × N pop high-performing new
individuals, where γ inst is an instantiation factor, which was set to 10. We chose a relatively high
instantiation factor to increase the changes of finding new high-performing solutions during the
instantiation. The individuals were instantiated based on the rule sets learned by the ML model.
Rules in the rule set were weighted based on their precision when instantiating new individuals:
rules with a higher precision were used more often to generate new individuals than rules with
a lower precision. Based on a rule, the decision variable values of instantiated individuals were

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

Exploring the Explainable Aspects and Performance of a LEMOO Method 4:15

Table 1. Computed Payoff-table for the Vehicle

Crash Worthiness Problem

Vehicle crash worthiness problem

Minimized f1 f2 f3
f1 1,661.71 8.30 0.071
f2 1,675.45 6.14 0.26
f3 1,692.02 10.56 0.042

The first column indicates which objective has been

minimized on each row. The minimum values in

each column for each problem are in bold, whereas

the maximum values are underlined.

randomly generated according to the upper and lower limits extracted from the rule. If a rule
did not describe an upper or lower limit for a variable, the upper and lower bound based on box
constraints of the variable were used instead, respectively. We did not consider problems with
function constraints on the variables, but implementing an instantiation strategy to account for
function constraints as well is possible in the XLEMOO framework. The new instantiated indi-
viduals and the high-performing group were then combined, and the selection operator from the
learning mode was used to select the best individuals, keeping the population size constant. The
new population generated in the learning mode was also saved in the population archive.

4.1.3 MOO Problem Setup. In the experiments conducted, we considered two real-life based
MOO problems. The first one is the vehicle crash worthiness problem discussed in Section 5. We
will present the results for the vehicle crash worthiness problem later in this section but have
included the results for the second problem in the appendix. We made this choice to maintain
the clarity of the main text and to not inflate the number of figures present in the text. We utilized
the problems as implemented in the desdeo-problem package [Misitano et al. 2021], version 1.4.6.

The second problem considered in the experiments, the car-side impact problem [Jain and Deb
2013], extended with a fourth objective from the work of Tanabe and Ishibuchi [2020], optimizes
the crash safety of a car in case of a side impact. The original problem had three objectives to
be minimized: the mass of the vehicle, the pubic force experienced by a passenger in case of a
crash, and the average velocity experienced by the V-pillar withstanding the impact load from a
crash. The fourth objective is the sum of the 10 constraints the decision variables of the problem
are subject to. The seven decision variables of the problem, which model the thickness of the
various car parts (in millimeters) that contribute to the crash safety of the vehicle, are subject to
the following box constraints: x1 ∈ [0.5, 1.5],x2 ∈ [0.45, 1.35],x3 ∈ [0.5, 1.5],x4 ∈ [0.5, 1.5],x5 ∈
[0.875, 2.625],x6 ∈ [0.4, 1.2], and x7 ∈ [0.4, 1.2].

Because the achievement scalarizing function (2) requires information about a problem’s ideal
and nadir points, we computed the approximations of these points by utilizing our LEMOO method.
We ran the method solely in a Darwinian mode for 2,000 iterations, optimizing each objective
function separately. The resulting objective vectors have been collected in Table 1 for the vehicle
crash worthiness problem forming a payoff-table [Miettinen 1999]. In the payoff-table, the ideal
point is located on the main diagonal, whereas the nadir point can be approximated by taking the
maximum value from each column. Then, from the payoff-table, we can approximate the ideal and
nadir points as z

∗
crash
= (1,600.0; 6.0; 0.038) and z

nadir
crash
= (1,700.0; 12.0; 0.30). Notice that from the

values shown in Table 1, we have chosen lower values for the ideal point components and higher
values for the nadir point components than shown in the table. This was done to assure that the
computed objective vectors during the experiments would fall between the ideal and nadir points

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

4:16 G. Misitano

in both problems, which is required in the achievement scalarizing function (2). We utilized the
payoff-table method to compute the approximations for the ideal and nadir points because of the
simplicity of the method, and because our experiments do not critically depend on the exact values
of the points—it is sufficient that computed solutions fall between the points, and the points can
also be updated during the solution process, if needed.

4.2 Exploring the Effects of the Learning Mode Frequency and the H/L Split on

LEMOO Performance

4.2.1 Setup. In this first experiment, our goal was to find out the effect of the choice of the H/L
split in the learning mode and the frequency of switching from a Darwinian mode to a learning
mode on the performance of our LEMOO method. We chose 10 different H/L splits ranging from 5%
to 50% in increments of 5%, and 11 different switching frequencies: 2, 4, 5, 8, 10, 20, 25, 50, 100, 200,
and 500. For each combination of an H/L split and switching frequency, we ran our LEMOO method
so that the total iterations would always sum to 1,000 (i.e., NT × (ND +N L) = 1,000). However, as
mentioned in Section 3, we iterate the LEMOO in a learning mode always only once (i.e., N L = 1)
throughout the experiment. Each run was repeated 10 times for all problems considered to even
out statistical fluctuations arising from the heuristic nature of the method. This meant that our
LEMOO method was run 1,100 times in total for each problem considered. As for the reference
points chosen in our fitness function (2), we chose z̄crash = (1,650.0; 7.0; 0.05) for the vehicle crash
worthiness problem. The reference point was kept constant throughout the experiments so that
the results could be compared.

For each run, we measured and collected the following quantities related to the populations in
each of the iterations in Darwinian and learning modes: the decision vectors, the objective vectors,
the fitness function values for each individual, the best fitness function value, the average fitness
function value, the hypervolume (with the nadir point of the studied problem set as the point with
respect to the hypervolume is computed), and the cumulative sum of the number of unique decision
vectors. We measured the fitness function values to probe the performance of our LEMOO method
in finding optimal solutions. Likewise, we measured the hypervolume and the cumulative sums to
probe the variety of solutions in the populations. Since we are utilizing the scalarizing function
in (2) to compute the fitness, we are not trying to approximate the whole PO set; instead, the search
is focused on finding a small subset of the PO set residing near a reference point. It is therefore
feasible to assume the subset of the approximate PO set to form a front of relatively continuous,
connected, and smooth objective vectors, which makes the hypervolume and cumulative sums
appropriate measures for the variety of the solutions in our case. In addition, solutions close to
the reference point are assumed to have approximately a linear connection between the decision
variables and objective vectors. The measured and collected quantities were saved for each run in
files in a JSON format. Snakemake [Mölder et al. 2021] was used to manage the execution of the
experiments and to ensure the reproducibility and transparency of them. The data generated in the
experiments is openly available on Zenodo [Misitano 2023b], and the steps needed to reproduce
the data are documented in the online documentation of the XLEMOO framework.4

4.2.2 Results and Analysis. For each combination of an H/L split and learning mode switching
frequency, the data generated by the 10 repetitions of the experiment were aggregated by com-
puting the mean and the standard deviation of each measured quantity. By visual inspection, the
data seemed to be normally distributed with no significant outliers, which makes the mean and
the standard deviation sensible statistical measures for the data under study.

4https://xlemoo.readthedocs.io/en/article_v1.1/introduction.html#reproducibility

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

https://xlemoo.readthedocs.io/en/article_v1.1/introduction.html#reproducibility

Exploring the Explainable Aspects and Performance of a LEMOO Method 4:17

Fig. 3. The aggregated measured data for the vehicle crash worthiness problem after 200 iterations. The data

is plotted for all the switching frequencies considered. The H/L split was kept constant at 20.

Fig. 4. The aggregated measured data for the vehicle crash worthiness problem after 1,000 iterations. The

data is plotted for all the switching frequencies considered. The H/L split was kept constant at 20.

The aggregated data was then further studied by plotting the means of the four measured quan-
tities for each iteration by varying the switching frequency and keeping the H/L split constant.
Plots as shown in Figures 3 and 4 were generated and studied for all problems considered. In these
figures, the H/L split was set to be 20 to serve as an example. It was quickly noticed that the mean
of the best fitness value and the average of the fitness values converged before the 200th itera-
tion in the problems considered, as can be seen by comparing Figures 3 and 4. The mean of the

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

4:18 G. Misitano

Fig. 5. The mean and standard deviations of the best fitness values for iterations 10, 50, 200, and 1,000 for

the vehicle crash worthiness problem.

hypervolume seems to quickly settle before the 200th iteration but clearly keeps decreasing until
the last iteration. The mean of the cumulative sums of unique solutions also keeps increasing until
the last iteration. The changes after the 200th iteration in all measured quantities seemed approx-
imately constant. The described behavior was true for all H/L splits. Based on these observations,
it seems that exploring the early iterations in our LEMOO method in more detail than the later
ones makes sense.

As a result of the preceding examination, we decided to study the aggregated data in more detail
for iterations 10, 50, 200 and 1,000 by visualizing the data in heatmaps as shown in Figures 5, 6, 7,
and 8 for the vehicle crash worthiness problem. In the heatmaps, each cell represents the values of
the aggregated measures for an H/L splitting and switching frequency combination. The color of
the cell indicates the mean, whereas the numerical quantity inside the cell indicates the standard
deviation. The standard deviation is expressed as a percentage of the mean—that is, a quantity’s
standard deviation of 5, and a mean value of 100, would be expressed as a percentage with a value
of 5%. The darker the cell, the lower its values, and the lighter, the higher. For the mean of the best
fitness and the average (mean) of the mean fitnesses, a lower value (darker color) is better, whereas
for the hypervolume and the cumulative sum of unique solutions, a higher value (lighter color) is
better.

4.2.3 Observations. Here we present the results of the experiment and highlight the most obvi-
ous observations that can be made based on the data. Our observations are general to all problems
considered in the experiment unless specified otherwise. We conclude by giving general remarks
about the results. The reader interested only in the final remarks may skip to the end of the obser-
vations.

Observing the mean of the best fitness values found in the vehicle crash worthiness problem in
Figure 5, we can see that in iteration 10, there is a darker hue on the left side of the heatmap. This
means that, on average, the best fitness values found were lower with a lower switching frequency.
This trend was also observed in other iterations but was not consistent throughout the problems

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

Exploring the Explainable Aspects and Performance of a LEMOO Method 4:19

Fig. 6. The mean and standard deviations of the average of the fitness values for iterations 10, 50, 200, and

1,000 for the vehicle crash worthiness problem.

considered—that is, there is a darker hue on the left of the heatmap for iteration 1,000 in the vehicle
crash worthiness problem, but this was not generally observed in all problems. We also notice that
there is no clear gradient in the vertical directions of any of the heatmaps in Figure 5. This means
that the choice of H/L split had no noticeable effect on the performance of our LEMOO method in
finding individuals with a better best fitness value.

For the mean of the average fitness values, we notice a similar trend of a darker hue on the left of
the heatmap of iteration 10 in Figure 6. A darker hue was again observed on the left of the heatmap
for iteration 1,000 for the vehicle crash worthiness problem but was not observed in all problems.
We also notice that with a combination of a low switching frequency and H/L split, there might
even be a detrimental effect on our method’s ability to improve the average of the mean fitness,
as seen by the lighter hue of the very left of the heatmap for iteration 50 in Figure 6. We again
observe no noticeable change in gradient in the vertical direction in any of the heatmaps, which
means that the H/L split had little effect on our method’s performance to improve the populations’
average means values.

Observing the mean values for the computed hypervolumes in the vehicle crash worthiness
problem show in Figure 7, we can in turn note that in the early iterations (10 and 50), there seems
to be a lighter hue on the left indicting higher (better) values for the mean value of the hypervolume
computed. For the vehicle crash worthiness problem, there seems to be a slightly darker hue in
the heatmap of iteration 1,000, indicating lower (worse) hypervolume values, but this was not
observed in all problems. And again, the choice of H/L split seems to have had little effect on the
mean values of the hypervolume since there is no noticeable gradient in the vertical direction of
any of the heatmaps.

If we study the mean values of the cumulative sums of unique solutions found in each itera-
tion for the vehicle crash worthiness problem shown in Figure 8, it seems that in early iterations
(10 and 50), with a combination of a low switching frequency and H/L split, our method seems to
perform better when finding unique solutions. However, in the other iterations, there seems to be
a lighter hue on the right of the heatmaps, indicating a higher (better) value for the cumulative

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

4:20 G. Misitano

Fig. 7. The mean and standard deviations of the hypervolumes values of the population in iterations 10, 50,

200, and 1,000 for the vehicle crash worthiness problem.

Fig. 8. The mean and standard deviations of the cumulative sums of unique solutions in iterations 10, 50,

200, and 1,000 for the vehicle crash worthiness problem.

sums. Unlike in the observations for the other measures, it seems that the choice of the H/L split
might have a minor effect on our method’s ability to find more unique solutions.

Last, observing the standard deviations of the measured quantities in the heatmaps in Figures
5 through 8, we can observe mostly low values between 0% to 10%, indicating a relatively low
statistical variance of our results. However, an exception to this observation can be seen in iteration
1,000 for the cumulative sums of unique solutions in Figure 8, where the standard deviations raise

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

Exploring the Explainable Aspects and Performance of a LEMOO Method 4:21

occasionally above 20%, and in some cases even above 50%. Nevertheless, in general, the statistical
fluctuations of our results were low.

Final Remarks. For each of the measured quantities (the best fitness value, the average of the
mean fitness value, the hypervolume, and the cumulative sum of unique solutions), the most no-
ticeable effects were observed in early iterations (10 and 50). The effects were positive. In all of the
heatmaps, the effect were noticed only when the switching frequency was lower than the iteration
represented by the heatmap—for example, in the heatmaps representing results for iteration 50, the
noticed effects were present only for switching frequencies lower than 50. For higher switching
frequencies in these cases, our LEMOO method has not engaged in a learning mode yet, meaning
that the method has operated purely in a Darwinian mode. This is an important observation, as it
is clear evidence that the addition of a learning mode has had an obvious effect on the performance
of our LEMOO method.

4.3 Explanations in LEMOO

Here, we explore in more depth the explanations emerging from the use of an interpretable ML
model in the learning mode of our LEMOO method. We also discuss how rule sets to support DMs
can be extracted from our method. These rule sets provide insights about the decision vectors with
the highest fitnesses found. We focus on the vehicle crash worthiness problem to give a concrete
example of the explanations generated. A showcase on how the rules can benefit a DM in practice
is given in Section 5.

4.3.1 Setup and Results. Here, we utilized our LEMOO method described in the previous sec-
tions. We chose the number of total iterations to be 200 and the switching frequency to be 20.
The H/L split value was set to 20%. These choices were based on the results of the experiments
conducted in Section 4.2. The other parameters of our LEMOO method were kept the same as de-
scribed previously. We ran the method once with four different reference points used in the fitness
function (2), which are listed in Table 2. The first reference point z̄1 was the same as used in the pre-
vious experiments. There was no particular criterion in choosing the other reference points other
than for the sake of providing more examples of possible rule sets emerging from our method to
study.

Each rule in the rule sets was generated as follows. Rules were extracted from the skope-rules
model from the final iteration of our LEMOO method. Each rule was then inspected, and the most
accurate rule was selected. From the most accurate rules, upper and lower limits for each variable
in the vehicle crash worthiness problem were searched for. If there was no rule describing a vari-
able’s lower or upper limit, the limit was taken from the final population computed in the LEMOO
method—that is, the population was inspected for the variable, and the lowest or highest value
found in the population was used as the lower or higher limit, respectively. If two rules extracted
from the skope-rules had the same accuracy and described the same variable, then the rule with a
stricter limit was selected—that is, if two lower (higher) limits were extracted from the rules, then
the lower (higher) limit with a higher (lower) value was selected.

The rule sets generated are shown in Table 2 for each reference point considered. The accuracies
of the rules from which the limits were extracted are also shown. An accuracy of −1 means that
no rule described a particular variable’s lower or higher limit, so the limit extracted from the
population was used instead. In Table 2, we also report the lower and upper limits extracted from
the final population to be compared with the respective limits extracted utilizing the rules from
skope-rules.

To study the spread of the possible solutions computed based on the rules in the rule sets gener-
ated, we randomly generated 100,000 decision vectors based on the rules—that is, for each variable,

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

4:22 G. Misitano

Table 2. Rule Sets Generated for the Four Reference Points Considered

Rule set 1: z̄1 = (1,650.0; 7.0; 0.05)
Variable Lower (R) Acc. Upper (R) Acc. Lower (P) Upper (P)

x1 1.0 (0.485) 1.0 (1.0) 1.0 1.0
x2 1.37958 (1.0) 1.43105 (1.0) 1.42731 1.42731
x3 1.0 (0.468) 1.00002 (1.0) 1.0 1.0
x4 1.0 (0.499) 1.00197 (1.0) 1.0 1.0
x5 2.31826 (1.0) 2.58524 (1.0) 2.38275 2.38275

Rule set 2: z̄2 = (1,600.0; 8.0; 0.07)
Variable Lower (R) Acc. Upper (R) Acc. Lower (P) Upper (P)

x1 1.0 (0.518) 1.00513 (1.0) 1.0 1.0
x2 1.0 (0.478) 1.0 (1.0) 1.0 1.0
x3 1.0 (0.404) 1.00004 (1.0) 1.0 1.0
x4 1.0 (−1) 1.00428 (1.0) 1.0 1.0
x5 1.0 (0.232) 1.0 (1.0) 1.0 1.0

Rule set 3: z̄3 = (1,700.0; 6.5; 0.18)
Variable Lower (R) Acc. Upper (R) Acc. Lower (P) Upper (P)

x1 1.0 (−1) 1.00001 (1.0) 1.0 1.0
x2 2.99992 (0.997) 3.0 (0.496) 3.0 3.0
x3 2.56003 (1.0) 2.57444 (1.0) 2.56865 2.56929
x4 1.0 (0.487) 1.00001 (1.0) 1.0 1.0
x5 2.97299 (1.0) 2.99937 (−1) 2.99717 2.99937

Rule set 4: z̄4 = (1,695.0; 6.1; 0.04)
Variable Lower (R) Acc. Upper (R) Acc. Lower (P) Upper (P)

x1 1.00001 (1.0) 1.00165 (1.0) 1.00001 1.00001
x2 2.99559 (1.0) 3.0 (0.987) 3.0 3.0
x3 1.0 (−1) 1.00001 (1.0) 1.0 1.0
x4 1.08398 (1.0) 1.1352 (1.0) 1.10772 1.10772
x5 2.99449 (1.0) 3.0 (−1) 3.0 3.0

The lower and upper limits extracted from the skope-rules and final population are listed in

columns ‘Lower (R)’ and ‘Upper (R),’ respectively, whereas the limits extracted from the final

population alone are listed in columns ‘Lower (P)’ and ‘Upper (P),’ respectively. The limits

extracted from a skope-rules are followed by the respective rule’s accuracy listed in the ‘Acc.’

columns, where 1 is the highest possible accuracy (equal to 100%) and 0 is the lowest. If a limit

was extracted from the final population instead, then the reported accuracy is −1.

we generated a random value between the lower and upper limits reported in the rule describing
the variable. We then plotted a histogram for each set of randomly generated decision vectors
showing the distribution of the vector’s fitness value. These histograms are shown in Figure 9.

The process of running our LEMOO method and generating the described rule sets can be found
in a Jupyter notebook.5 This notebook serves also as a good example of how our LEMOO method
can be, and has been, implemented in practice.

4.3.2 Observations. Observing the rule sets in Table 2, we can make some observations. First,
the rules extracted from skope-rules always describe a wider, or equal, range of possible decision

5https://xlemoo.readthedocs.io/en/article_v1.1/notebooks/How_to_extract_rules_example.html

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

https://xlemoo.readthedocs.io/en/article_v1.1/notebooks/How_to_extract_rules_example.html

Exploring the Explainable Aspects and Performance of a LEMOO Method 4:23

Fig. 9. The distributions of the fitness values of the decision vectors generated based on the rule sets ex-

tracted for the car-side impact problem. The best fitness function value found by our LEMOO method for

each reference point is also shown in the plots. The number of samples in each histogram is 100,000.

variable values when compared to the rules extracted from the final population alone. Second,
when the range is the same, or when there is no range—the upper and lower limits are the same—
the accuracies of the upper or lower limits extracted from skope-rules are in the range [0, 1). And
third, in most cases, at least one rule extracted from skope-rules was found to describe the lower
and upper limits of a variable.

Inspecting the histograms in Figure 9, none of the rule sets describe solutions that have fitness
values better than the best fitness value found. This is expected since after 200 iterations, our
LEMOO method was observed in Section 4.2 to have already converged in terms of best fitness
value and the average of fitness values in a population. Nonetheless, the rules in the rule sets
describe solutions with fitness values relatively close to the best. If we assume for the objective
vector corresponding to the individual with the best fitness value to be close to the reference
point considered when generating each rule set, we can also assume that the objective vectors
corresponding to the decision vectors generated based on the rule sets to be close to the reference
point. In the histograms for rule sets 1 and 2 in Figure 9, we can see an even distribution for the
solution fitnesses, whereas in the histograms for rule sets 3 and 4, we can see a slight bias in the
fitness values toward the best fitness value. Out of 100, 000 solutions generated based on the rules
in each rule set, none of the fitness values are significantly far from the best fitness values. This
means that by varying the decision vectors according to the rules in the rule sets, we find solutions
with respective objective vectors in the proximity of the objective vector with the decision vector
corresponding to the best fitness value. This also means that near the reference points considered,
we can approximate the relationship between objective function values and decision variables to
be linear.

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

4:24 G. Misitano

Final Remarks. The rule sets extracted from the interpretable ML model in our LEMOO method
are clearly more informative about the possible ranges of decision variable values close to a solu-
tion of interest from the perspective of a DM when compared to the respective information ex-
tracted from the final population alone. We also saw that the solutions generated according to the
rules in the rule sets are close to the original best solution. This can help a DM explore alternative
solutions close to the best one. Since the rule sets were learned based on past populations as well,
and not just the final one, we conclude that a better insight about the connection between deci-
sion vectors and objective vectors close to a solution of interest can be derived by considering the
population history, and that utilizing interpretable ML is one possible approach to generate these
insights.

5 SHOWCASE OF THE ADDED BENEFITS OF EXPLAINABILITY

In this section, we demonstrate in a proof of concept the benefits of the explanations extracted
from our LEMOO method, and how they can support a DM in solving a MOO problem. More
technical details on how the results have been computed and the rules extracted were given in
Section 4, where we reported more detailed experiments to explore the performance and explana-
tions provided by our LEMOO method, and presented the implementation of our method in more
detail.

5.1 LEMOO as an Explainable Interactive Method

We demonstrate how our LEMOO method, which combines an indicator-based EMO and skope-
rules, can be used as a reference point based interactive MOO method. The input is a reference
point provided by a DM. The reference point is utilized in the scalarizing function in (2), which
functions as the indicator in our method. Our method then computes a population of solutions from
which the solution with the best fitness value is shown to the DM. In addition, the method outputs
explanations, in the form of rule sets generated by skope-rules, describing the high-performing
solutions providing the DM with additional insights about the best-performing solutions gener-
ated near the reference point from the perspective of decision variables. This idea is visualized in
Figure 10. In addition, the DM has also the option to provide decision vectors, which are evaluated
into objective vectors, to explore different solutions inspired by the insights provided by the expla-
nations. This in turn can also provide support to the DM in providing further reference points in
subsequent iterations. In practice, an analyst operating the method can aid the DM when evaluat-
ing decision vectors specified by them. But in our case, we have assumed the DM to be an engineer,
who is familiar with the domain of the problem and its technicalities, including the meaning of
the decision vectors.

As a showcase of how our method can be utilized as an interactive MOO method, we show
three iterations with the author acting as the DM. We also comment on the insights provided to
the DM. We consider the vehicle crash worthiness problem [Liao et al. 2008] to optimize the crash
safety of a car. It has three objectives to be minimized: the frontal mass of the vehicle, the collision
acceleration experienced by passengers in case of a full frontal crash, and the toe board intrusion
in the case of an off-set frontal crash. The problem has five decision variables, which model the
thickness of five reinforced members in the frontal structure of the car. They have box-constraints,
where the thickness should be between 1 and 3 mm. The problem has no other constraints.

To support the DM in providing reference points, we assume that before the optimization pro-
cess, the DM has been informed of the approximated ideal and nadir points of the vehicle crash
worthiness problem: z

∗
crash
= (1,600.0; 6.0; 0.038) and z

nadir
crash
= (1,700.0; 12.0; 0.30). Details on how

these points were approximated are given in Section 4. The explanations provided to the DM dur-
ing the optimization process are the rule sets shown in Table 3. These describe the solutions with

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

Exploring the Explainable Aspects and Performance of a LEMOO Method 4:25

Fig. 10. An example of how our LEMOO method can be used as an interactive MOO method.

the best fitness values found in each iteration by means of lower and upper limits for each deci-
sion variable. Each limit has also an accuracy associated with it. The rule sets are extracted from
the skope-rules model used in our method. A more detailed description of how the rule sets have
been derived is given in Section 4.3. Next, we describe the three iterations and show how our
LEMOO method can support a DM in solving the vehicle crash worthiness problem and gaining
new insights.

Iteration 1. In the first iteration, the DM provided an optimistic reference point close to the
ideal point of the problem: z̄1 = (1,610.0; 6.2; 0.041), which resulted in the best solution (as defined
earlier) x1 = (1.00887; 3.0; 1.0; 1.37784; 1.00168) with the objective vector z1 = (1,669.28; 7.69556;
0.08126). The DM was also shown the rule set derived shown in Iteration 1 in Table 3. The DM
noticed that the objective vector was worse than the reference point in each component. Looking
at the rule set in Table 3 for Iteration 1, he noticed that the thickness of the second and fourth
member could perhaps be lowered while keeping the result otherwise similar to decrease the mass
(first objective) by a small amount. Driven by these insights about the optimal solutions, he then
tried evaluating the problem with the decision vector x

′
1
= (1.00887; 2.99985; 1.0; 1.36258; 1.00168),

which resulted in the objective vector z
′
1
= (1,669.18; 7.66459; 0.08166). Although the effect on

the mass was minimal, he noticed a more significant improvement in the collision acceleration
experienced by passengers (second objective). After learning of the minimal effect changing the
variables had on the mass, and the too optimistic value he had set for the mass in the aspiration
level of z̄1, he decided to explore the mass by providing a new reference point instead.

Iteration 2. In the next reference point, the DM decided to increase the aspirations levels for
the mass, keep the collision acceleration the same as in z

′
1
, but increase the aspiration level for

the toe board intrusion (third objective) in hopes of achieving a lower mass than in the previous
iteration. Thus, he gave the reference point z̄2 = (1,680.0; 7.66459; 0.07), which resulted in the
best solution x2 = (1.0; 3.0; 1.0; 1.25473; 2.99988) with the corresponding objective vector z2 =

(1,677.23; 7.61449; 0.068647). The DM noticed that the objective values in the objective vector were
all better than in the reference point, but the mass was now clearly too high. After inspecting the
rules in the rule set in Table 3 for Iteration 2, he noticed that the fourth variable once again had

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

4:26 G. Misitano

a large range. The DM made a note of this and decided not to try other decision variable values
based on the rules in the rule set because the ranges for the variables were narrow and did not
encourage the DM to explore the solution in this iteration any further.

Iteration 3. The DM was satisfied with the value of acceleration experienced by passengers
(second objective) in the previous objective vector, z2; however, he still wished to find a solution
with a lower mass (first objective) and was ready to trade off for a slightly larger value for the toe
board intrusion (third objective). Thus, the third reference point was z̄3 = (1,670.0; 7.61449; 0.085),
which led to the best solution x3 = (1.00286; 2.99999; 1.00000; 1.30009; 1.03374) with the objective
vector z3 = (1,668.83; 7.53771; 0.083098). The DM was happy to see a lower mass (first objective)
and a lower acceleration (second objective) than in z2. After inspecting the rule set of Iteration 3

in Table 3, the DM noticed again that the fourth variable of the problem had the largest range of

Table 3. Three Iterations Featured in Our LEMOO Method’s Showcase

Iteration 1

Reference point: z̄1 = (1,610.0; 6.2; 0.041)
Best objective vector: z1 = (1,669.28; 7.69556; 0.08126)
Best decision vector: x1 = (1.00887; 3.0; 1.0; 1.37784; 1.00168)
Variable Lower Acc. Upper Acc.

x1 1.00887 (−1) 1.00973 (1.0)
x2 2.99985 (1.0) 3.0 (−1)
x3 1.0 (0.496) 1.0 (0.429)
x4 1.36258 (1.0) 1.37986 (1.0)
x5 1.00168 (−1) 1.0028 (1.0)

Iteration 2

Reference point: z̄2 = (1,680.0; 7.66459; 0.07)
Best objective vector: z2 = (1,677.23; 7.61449; 0.068647)
Best decision vector: x2 = (1.0; 3.0; 1.0; 1.25473; 2.99988)
Variable Lower Acc. Upper Acc.

x1 1.0 (−1) 1.00002 (1.0)
x2 2.99979 (1.0) 3.0 (0.496)
x3 1.0 (0.993) 1.0 (1.0)
x4 1.23885 (1.0) 1.25545 (1.0)
x5 2.99986 (1.0) 2.99988 (0.997)

Iteration 3

Reference point: z̄3 = (1,670.0; 7.61449; 0.085)
Best objective vector: z3 = (1,668.83; 7.53771; 0.083098)
Best decision vector: x3 = (1.00286; 2.99999; 1.00000; 1.30009; 1.03374)
Variable Lower Acc. Upper Acc.

x1 1.00184 (0.996) 1.00558 (1.0)
x2 2.7135 (1.0) 3.0 (0.48)
x3 1.0 (0.517) 1.00011 (1.0)
x4 1.21741 (1.0) 2.12628 (1.0)
x5 1.02602 (1.0) 1.04323 (1.0)

The reference point provided by the DM, the decision and objective vector corresponding to

the best solution, and the rules derived from our method are shown for each iteration. The

lower limits are shown in the ‘Lower’ column and the upper limits in the ‘Upper’ column.

Each limit is followed by its accuracy ranging from 0 (completely inaccurate) to 1 (completely

accurate). Refer to Section 4.3 for further details on how the rule sets have been generated.

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

Exploring the Explainable Aspects and Performance of a LEMOO Method 4:27

values according to the rules—this time noticeably larger than in the previous iterations. Although
the DM was already happy with the solution found, the insights from the rule set inspired him to
modify the decision vector according to the rules in hopes to decrease the mass by lowering the
thickness of the members represented by the decision variables x1,x2,x4, and x5. This led to the
modified decision vector x3

′ = (1.00184; 2.7135; 1.00000; 1.21741; 1.02602), with the corresponding
objective vector z3

′ = (1,667.49, 7.54346, 0.094955). The DM was quick to note that lowering the
thicknesses did not have a significant effect on the mass (first objective) or acceleration (second
objective), but it did noticeably increase the toe board intrusion (third objective), which was too
large a tradeoff for the DM to make.

In the end, the DM chose x3 as the final solution since he was most satisfied with the corre-
sponding objective values. However, the DM also learned that changing the thicknesses of the five
reinforced members in the frontal structure of the car represented by the decision variables had,
in general, a surprisingly small effect on the mass of the car and a more noticeable effect on the toe
board intrusion. Furthermore, the DM observed that the rule sets include larger ranges for variable
x4, as indicated in Table 3. The DM thought that this might diminish the impact of the variable
on the values of the objective function, particularly within his region of interest. The DM thought
that it may be a good idea to revisit the problem formulation to investigate this last point further
before making any decisions based on the final solution.

Final Remarks on the Showcase. As we saw, thanks to the explanations (rule sets), the DM
got important insights regarding the connections between decision variables and objective vectors,
and he got some support to provide new reference points. Moreover, the insights made the DM
question the formulation of the MOO problem, since changing the variables did not have the effect
he expected. This caused the DM to postpone any decision based on the final solution found. The
insights gained from the explanations (rule sets in Table 3) caused the DM to be more critical about
the solutions and also explore the decision space of the problem, which, in the end, affected the
whole decision making process.

6 DISCUSSION

In this section, we discuss the results of the experiments conducted in Section 4 and the results’
main implications in regard to our current work and future research. We also consider the impli-
cations of the practical showcase discussed in Section 5. We discuss the results of the experiments
related to the performance of our LEMOO method in Section 6.1, and the results regarding the
explanation aspects of our method and the showcase in Section 6.2. We then discuss the further
potential of the explanations in the context of LEMOO in Section 6.3. Finally, we conclude by
discussing the general implications of our work in Section 6.4.

6.1 On the Performance of LEMOO

Based on the observations made in regard to the performance of our LEMOO method in Section 4.2,
we can draw the following conclusions. First, a learning mode has a clear positive contribution
to the performance of our LEMOO method in finding individuals with better fitness values if the
frequency of switching to the learning mode is not too frequent nor too infrequent. This can help a
LEMOO method converge faster if compared to a method without a learning mode. However, if the
switching is too frequent, the population might not include enough individuals with clearly better
fitness values, which makes it difficult for the ML model in the learning mode to be able to build a
valid hypothesis for the high-performing group. In turn, if the learning frequency is too infrequent,
the populations can become too homogeneous, which again makes it hard for an ML model to learn
a distinction between a high-performing and low-performing individual. Interestingly, the choice
of an H/L split seems to have little to no effect on the performance of our LEMOO method unless

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

4:28 G. Misitano

combined with a low switching frequency, in which case it can have a detrimental effect on the
performance. The fact that LEMOO offers clear, although not immense, benefits in term of search
performance of finding solutions with a better fitness value is in line with the findings reported
in previous studies exploring LEMOO methods, which were discussed in Section 2.3. This gives us
confidence in the validity of our own experiment as well. But in these previous works, the effect
of the switching frequency or H/L split was not studied in detail.

The second conclusion we can make is that a low switching frequency can boost the diversity
of the populations found in our LEMOO method, but only during early iterations (up to 200 out
of 1,000 in our case). The observations for the computed hypervolumes and cumulative sums in
Section 4.2 are the evidence supporting this claim. This makes sense if we take into account the
first conclusion we made. In other words, because with a lower switching frequency, our LEMOO
method converges faster, and it also means that the populations become saturated with more simi-
lar individuals in earlier iterations, leading to a decrease of the learning mode’s performance in the
hypothesis forming. We did, however, observe that a low H/L split combined with a low switching
frequency can lead to a slight boost in the hypervolumes and cumulative sums of the populations,
but if we also take into the account the observation that this same combination of frequency and
split can have a detrimental effect on the fitnesses of the individuals found, the tradeoff between
finding good fitness values and a diverse population with a low frequency and split becomes evi-
dent. The potential of LEMOO boosting the diversity of computed populations was also observed
in the works discussed in Section 2.3; however, the potentially detrimental effect of a low switching
frequency was neither reported nor studied, or both, in these previous works.

It is important to also mention the limitations of our first experiment. First, we only considered
two MOO problems in Section 4.2, we did not vary any parameters of the Darwinian mode of
our method, we did not vary the ML model used in the learning mode of our method, we did not
consider other fitness functions than the scalarizing function in (2), and we did not vary the pa-
rameters of the ML model used. We did, however, explore these aspect during internal testing. We
chose to report the results for only two problems because we found no significant differences in
the results for other problems tested. This was also true for the fitness function chosen—we tried
other scalarizing functions as well with no significant changes in the performance of our LEMOO
method. Not surprisingly, the parameters in the Darwinian mode of our method did have a notice-
able effect on the performance, but the results showed still similar trends when compared to what
we reported in this study. The choice of our ML model to be skope-rules was mainly motivated
by its superior performance in finding rules. We compared it to a decision tree (C4.5 [Salzberg
1994] and CART [Breiman 2017]), boosted rule set [Freund and Schapire 1997], and slippery rule
set [Cohen and Singer 1999] but simply found their performance subpar compared to skope-rules.
One of the main factors in choosing an ML model, apart from its interpretable nature, is its per-
formance. It must be fast enough so that training it and generating new solutions is comparable
to the time it takes for the LEMOO method to finish iterating in a Darwinian mode. Otherwise,
the learning mode of a LEMOO method might be too slow to justify its inclusion. In our setting,
we found skope-rules to be able to find useful rules in a feasible time, which ultimately led us to
choose it as our ML method. The issue of exploring other ML models is also technical since the
trained models are used to generate new data, which is an atypical application of the models. This
means that it requires extra effort to develop the necessary utilities for the models to be utilized
in a LEMOO method. In our XLEMOO framework, we have provided the necessary utilities to use
the aforementioned ML models. That being said, our goal was to explore the effect of the H/L split
and the switching frequency to a learning mode in our LEMOO method.

We have not compared our numerical results to previous works. This is because similar
works with comparable results and reproducible experiments do not exist according to our best

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

Exploring the Explainable Aspects and Performance of a LEMOO Method 4:29

knowledge. However, we have taken care to report our results in a way that is reproducible so
that future works may be compared to ours. Because we propose our current method to be used as
an interactive MOO method, challenges arise since comparing interactive methods to each other
is an open research question [Afsar et al. 2021], which is further complicated by the inclusion of
explanations. The best works to compare our method to would be the ones presented in the work
of Corrente et al. [2021] and Misitano et al. [2022], since they both discuss an interactive MOO
method with explanations. However, there is no established way to compare such methods. To
best compare these methods, we suggest that in a future study, experiments with human partici-
pants should be conducted to compare the interactive methods (as suggested by Afsar et al. [2022]),
where the usefulness of the explanations to a human user is also assessed. That being said, our cur-
rent results can be used as a baseline when developing new and more advanced LEMOO methods,
and as an initial guideline when figuring out the H/L splitting ratios and switching frequencies,
for instance.

6.2 On the Explanation Aspects of LEMOO

In Sections 4.3 and 5, we studied the potential of the generated explanations in our LEMOO method
when the ML model employed in a learning mode is interpretable. In light of the showcase and
the observations made, we conclude the following. First, it is evident that the rules extracted from
the skope-rules provide much more potential insight for a DM about the decision variable values
near a reference point if compared to the rules extracted from the final population alone. It was
also observed that certain decision variables were clearly highlighted as being important when
different reference points were used. This importance was underlined by the fact that rules defining
a sensible—as in not being too narrow—range were found only for a couple of variables in each rule
set. This can help a DM learn about the MOO problem by helping them build an understanding
of which decision variables could be varied in the final solution while not steering too far from a
point of interest (i.e., the reference point). This can guide the DM in providing further preferences,
or in making a final decision based on the solutions found, as we saw in the showcase.

In addition, the accuracies of the rules in each rule set observed can prove to be useful for a
DM. When a rule defines a very narrow range, or no range at all, if the accuracy of the lower
or upper limit is low, it can encourage the DM to explore solutions beyond these more inaccurate
ranges. This can help the DM explore regions in the decision space of the MOO problem that could
otherwise be left unexplored but still potentially contain solutions of interest.

We believe that our LEMOO method can be best utilized as an interactive method, as was done
in Section 5.1, where a DM provides multiple reference points in subsequent runs of our method.
This way, the explanations may be exploited to their fullest by the DM helping them learn about
the MOO problem and explore the solution space.

Our experiments in Section 4.3 were of course subject to the same limitations as discussed in
Section 6.2. Furthermore, to better validate the actual usefulness of the rule sets generated based
on our LEMOO method in an interactive setting, experiments with real DMs should be conducted.
Although rule sets are, in general, easily interpretable by humans [van der Waa et al. 2021], it would
be interesting to compare different kinds of explanations in an interactive MOO context. The way
explanations are communicated to the DM in a MOO is also an unexplored area (e.g., how to best
visualize them?). Empirical experiments, such as the one presented by Afsar et al. [2022], could be
adapted to explore how explanations, and their usefulness, are perceived by DMs.

6.3 Further Potential of Explainability in LEMOO

In the showcase given in Section 5, we saw how the explainability provided by our LEMOO
method was able to offer support to a DM in gaining insights of the connection between decision

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

4:30 G. Misitano

variables and objective vectors in providing new reference points, and in assessing the formula-
tion of the MOO problem. For providing new reference points, it is also possible to present the
high-performing individuals in the final population of our method to the DM in the objective
space of the problem, effectively providing the DM with not only further solution candidates but
also a description of the candidates in the objective space. Showing the high-performing solution
candidates in the objective space can support a DM in providing further reference points as well,
which addresses the open issue in interactive MOO methods—that is, the lack of supporting DMs
in providing preferences during an interactive solutions process.

Although a more technical DM may appreciate the implications of explainability regarding a
MOO problem formulation, the explanations can also offer valuable information to an analyst for-
mulating the MOO problem. An analyst can explore a formulated problem by trying to generate
an approximation of its whole PO set of solutions instead of just a subset near a reference point,
as we have done in our current work. A whole set can be approximated by choosing the indica-
tor appropriately in an indicator-based method, or the EMO method in the LEMOO approach can
be switched to some other method altogether. Nonetheless, assuming an indicator-based method
with rule-based explanations, an analyst can gain important insights about the nature of the whole
approximated PO set. For instance, the rules may reveal that in the computed approximation, the
ranges of the decision variables may differ significantly from the box-constraints of the problem.
In turn, this can cause the analyst to revisit the MOO problem formulation by adjusting the con-
straints on the variables leading to a computationally more efficient problem formulation (achieved
by limiting the search space). Rules significantly differing from the box-constraints of the MOO
problem may also indicate that a search process for optimal solutions has been stuck on a certain
part of the PO set of solutions—a local minima, for instance—which can be the case with discontin-
uous PO solution sets. Thus, explanations can enhance the process of formulating and validating
MOO problems and assessing the effectiveness of the optimization methods chosen, for example,
when modeling MOO problems in collaboration between domain experts and analysts as described
in the work of Afsar et al. [2023].

In the example given in Section 5.1, we saw how a single solution could be accompanied by
descriptive rules describing similar solutions near it in terms of decision variables. This can also
facilitate communicating the found solution to other stakeholders, improving the transparency
of the decision making process. This can help DMs in justifying their decisions to not just stake-
holders but to other DMs as well, such as in a group decision making process [Lu et al. 2007]. For
instance, explanations can offer negotiation support between two or multiple DMs with different
preferences. It is possible that different objective vectors may share similarities in the decision
space, which can be unveiled by the kind of rule sets discussed in this section. This can support
multiple DMs in finding a compromise solution by considering decision variable values.

Thus far, we have considered the usefulness of explanations to a DM or analyst based on the
final population and the history of populations preceding it. As we saw in Section 4, the ML model
used, in our case skope-rules, was able to boost the search process for optimal solutions during the
optimization process based on intermediate populations, and we may also extract the explanations
generated on these intermediate populations during the optimization process to provide important
insights to a DM. Following the NAUTILUS philosophy6 [Miettinen and Ruiz 2016] and applying
it to the interactive method discussed in Section 5.1, we can choose to iterate the LEMOO method
only a few times and produce a suboptimal population of solutions, and show the high-performing
solutions of this population to the DM. This allows the DM to provide new preferences, which can
then be used in the indicator (in our case, the achievement scalarizing function in (2)) to steer the

6Starting an interactive process from the nadir point of a MOO problem and iteratively improving upon it until a solution

on the PO set is reached.

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

Exploring the Explainable Aspects and Performance of a LEMOO Method 4:31

optimization process toward solutions of interest from the point of view of the DM before actual
convergence is reached in the LEMOO method. This can promote the exploratory aspects of the
LEMOO method when employed as an interactive MOO method, and enables the DM to make a
tradeoff free decision during the interactive process. Unlike existing NAUTILUS methods, applying
the same philosophy to a LEMOO approach also provides information on the intermediate decision
variable values, which are not available in NAUTILUS methods. This can make the comparison of
intermediate solutions more meaningful from the perspective of the DM.

Although we have not explored the ideas discussed in this subsection explicitly in our current
work, the XLEMOO framework described in Section 3.3 enables researchers and practitioners to
readily start exploring the discussed ideas and more. Our current work provides a proof of concept
on the potential of explainability in the context of LEMOO promoting the overall paradigm of
explainable MOO.

6.4 General Implications of Our Study and Moving Forward

It is perhaps a little surprising that LEMs have not been explored more in the context of EMO
methods given the potential shown by our and past studies of LEMOO methods. The fact that a
lot of individuals are generated in the many populations of an EMO method makes the application
of ML models, which usually need significant amounts data to perform well, not only possible but
perchance even natural.

Based on our study, a simple addition of a learning mode to an indicator-based EMO method
could work as a niching operator to increase the diversity of individuals, or to boost the search
performance of the method when searching for individuals with better fitness values. By taking
into account the whole population history, a learning mode could also be a way to implement a
global search step in an EMO method. Moreover, as long as the populations generated in an EMO
method are saved in an archive, the same procedure to generate rule sets described in Section 4.3
could be applied to any EMO method, making the method more explainable. Of course, mixing
EMO methods with ML does come with an increase in computation cost, but as we have shown,
even simpler interpretable ML models, such as skope-rules, can work when utilized in a learning
mode.

Going forward, it would be interesting to see the concept of LEMs explored in other types
of EMO methods, such as in dominance-based and decomposition-based methods, and exploit
their unique nature. An ML model could be used to learn and explain the dominance rank-
ings in a dominance-based method, or to learn and explain different decomposition strategies in
decomposition-based methods. In addition to supporting DMs, these explanations could serve the
researchers or analyst operating and implementing the methods to build a better understanding
of which parameters to choose to achieve the best possible performance. If explainability is not a
goal, then exploring the potential of the more powerful ML models, such as deep neural networks
and support vector machines, could also be explored further in LEMOO methods.

Our study was also limited to rule-based explanations. In future studies, exploring different
kinds of explanations, such as causal and counterfactual explanations [Molnar 2022], would be
interesting. Moreover, explaining aspects of a MOO problem other than the characteristics of de-
cision vectors near a reference point should be studied further. For instance, explaining the con-
nection between preferences and computed solutions, as was done in the work of Misitano et al.
[2022] for reference point methods, could be pursued in the future studies of LEMOOs.

The future directions listed here, and especially in Section 6.3, are nothing but the tip of the
iceberg. However, the XLEMOO framework discussed in Section 3.3 provides other researchers
and practitioners alike with a solid starting point to explore the preceding ideas and more. Because
our framework is openly available and implemented as open source software, everyone is free

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

4:32 G. Misitano

to utilize and apply it, or extend it for others to use as well. This highlights the importance of
providing similar, open source, and openly available frameworks in future studies as well, and
collaborating on open source software to promote the openness and renewal of research.

7 CONCLUSION

We explored the potential of applying LEMs to solve MOO problems through our implementation
of a LEMOO method. We explored the performance aspects of our LEMOO method and showcased
the potential it can have in supplying a DM with additional explanations providing them insights
about the characteristics of decision variables near a solution of interest. We also discussed and
provided the openly available XLEMOO framework for others to utilize and implement their own
LEMOO methods with explanations.

Naturally, our work came with limitations, as discussed in Section 6, but also showed great
potential in terms of future research. LEMs are, without a doubt, an understudied area in the field
of EMO. Furthermore, when an interpretable ML model is utilized in a LEM’s learning mode, we
have the potential access to more insights about the characteristics of the populations generated
during the course of an EMO method. These insights can be expressed in the form of explanations,
as we did. To help the rest of the EMO community pursue their own research in studying the
application of LEMs in an EMO context, we provide the discussed XLEMOO framework as openly
available open source software.

Combining ideas of LEMs with ideas from EMO into LEMOO methods has vast potential to
unveil new and exciting ideas in the field of MOO. Moreover, utilizing interpretable ML models
in a learning phase in a LEMOO method has the potential to unlock additional insights thanks to
the vast number of individuals generated in a typical EMO setting. By leveraging these insights
into explanations, we have taken the first step toward establishing a new paradigm in the field of
MOO: explainable and learnable MOO. It is our hope that our work will inspire and enable future
studies and research to help develop this new field further.

A APPENDIX

Here, we present the main results of the experiments conducted in Section 4.2 for the car-side
impact problem. The ideal and nadir points of the problem were approximated from a payoff-table
(Table 4). The reference point used for the car-side impact problem was z̄car-side = (20.0; 3.5; 11.0;
0.1). The plots showing the aggregated measured quantities as a function of the switching fre-
quency, are shown in Figures 11 and 12. The heatmaps for the aggregated measured quantities are
shown in Figures 13 through 16. Refer to Section 4.2 for further details.

Table 4. Computed Pay-off Table for the

Car-Side Impact Problems

Car-side impact problem

Minimized f1 f2 f3 f4
f1 15.58 4.43 13.09 2.82
f2 36.71 3.59 11.87 14.19
f3 39.05 4.05 10.61 29.81
f4 23.72 4.30 12.91 0.14

The first column indicates which objective has been

minimized on each row. The minimum values in each

column for each problem are in bold, whereas the

maximum values are underlined.

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

Exploring the Explainable Aspects and Performance of a LEMOO Method 4:33

Fig. 11. The aggregated measured data for the vehicle crash worthiness problem after 200 iterations. The

data is plotted for all the switching frequencies considered. The H/L split was kept constant at 20.

Fig. 12. The aggregated measured data for the car-side impact problem after 1,000 iterations. The data is

plotted for all the switching frequencies considered. The H/L split was kept constant at 20.

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

4:34 G. Misitano

Fig. 13. The mean and standard deviations of the best fitness values for iterations 10, 50, 200, and 1,000 for

the car-side impact problem.

Fig. 14. The mean and standard deviations of the average of the fitness values for iterations 10, 50, 200, and

1,000 for the car-side impact problem.

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

Exploring the Explainable Aspects and Performance of a LEMOO Method 4:35

Fig. 15. The mean and standard deviations of the hypervolumes values of the population in iterations 10, 50,

200, and 1,000 for the car-side impact problem.

Fig. 16. The mean and standard deviations of the cumulative sums of unique solutions in iterations 10, 50,

200, and 1,000 for the car-side impact problem.

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

4:36 G. Misitano

ACKNOWLEDGMENTS

I would like to warmly thank Kaisa Miettinen, Bekir Afsar, Francisco Ruiz, and Babooshka
Shavazipour for their valuable comments on the manuscript. This research is related to the the-
matic research area Decision Analytics Utilizing Causal Models and Multiobjective Optimization
(DEMO, jyu.fi/demo) at the University of Jyväskylä.

REFERENCES

Bekir Afsar, Kaisa Miettinen, and Francisco Ruiz. 2021. Assessing the performance of interactive multiobjective optimiza-

tion methods: A survey. ACM Computing Surveys 54, 4 (2021), 1–27.

Bekir Afsar, Johanna Silvennoinen, and Kaisa Miettinen. 2023. A systematic way of structuring real-world multiobjective

optimization problems. In Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science, Vol. 13970.

Springer, 593–605.

Bekir Afsar, Johanna Silvennoinen, Giovanni Misitano, Francisco Ruiz, Ana B. Ruiz, and Kaisa Miettinen. 2022. Designing

empirical experiments to compare interactive multiobjective optimization methods. Journal of the Operational Research

Society 2022 (2022), 1–12.

Luis Miguel Antonio and Carlos A. Coello Coello. 2017. Coevolutionary multiobjective evolutionary algorithms: Survey of

the state-of-the-art. IEEE Transactions on Evolutionary Computation 22, 6 (2017), 851–865.

Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Sal-

vador García, Sergio Gil-López, Daniel Molina, Richard Benjamins, et al. 2020. Explainable artificial intelligence (XAI):

Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion 58 (2020), 82–115.

Sunith Bandaru, Amos H. C. Ng, and Kalyanmoy Deb. 2017a. Data mining methods for knowledge discovery in multi-

objective optimization: Part A—Survey. Expert Systems with Applications 70 (2017), 139–159.

Sunith Bandaru, Amos H. C. Ng, and Kalyanmoy Deb. 2017b. Data mining methods for knowledge discovery in multi-

objective optimization: Part B—New developments and applications. Expert Systems with Applications 70 (2017),

119–138.

Valerie Belton, Jürgen Branke, Petri Eskelinen, Salvatore Greco, Julián Molina, Francisco Ruiz, and Roman Słowiński. 2008.

Interactive multiobjective optimization from a learning perspective. In Multiobjective Optimization. Springer, 405–433.

R. Benayoun, J. de Montgolfier, J. Tergny, and O. Laritchev. 1971. Linear programming with multiple objective functions:

Step method (stem). Mathematical Programming 1, 1 (1971), 366–375.

Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning. Springer, New York, NY.

Guido Bologna. 2021. A rule extraction technique applied to ensembles of neural networks, random forests, and gradient-

boosted trees. Algorithms 14, 12 (2021), 339.

Jurgen Branke, Jürgen Branke, Kalyanmoy Deb, Kaisa Miettinen, and Roman Slowiński. 2008. Multiobjective Optimization:

Interactive and Evolutionary Approaches. Vol. 5252. Springer Science & Business Media.

Leo Breiman. 2017. Classification and Regression Trees. Routledge.

Tinkle Chugh, Karthik Sindhya, Jussi Hakanen, and Kaisa Miettinen. 2019. A survey on handling computationally expensive

multiobjective optimization problems with evolutionary algorithms. Soft Computing 23, 9 (2019), 3137–3166.

Carlos A. Coello Coello, Gary B. Lamont, and David A. Van Veldhuizen. 2007. Evolutionary Algorithms for Solving Multi-

objective Problems. Springer.

William W. Cohen and Yoram Singer. 1999. A simple, fast, and effective rule learner. In Proceedings of the 16th National

Conference on Artificial Intelligence and the 11th Innovative Applications of Artificial Intelligence Conference (AAAI/IAAI

’99). 335–342.

Salvatore Corrente, Salvatore Greco, Benedetto Matarazzo, and Roman Slowinski. 2021. Explainable interactive evolution-

ary multiobjective optimization. SSRN. Retrieved October 23, 2023 from https://ssrn.com/abstract=3792994

Kalyanmoy Deb and Ram Bhushan Agrawal. 1995. Simulated binary crossover for continuous search space. Complex Sys-

tems 9, 2 (1995), 115–148.

Kalyanmoy Deb and Kaisa Miettinen. 2009. A review of nadir point estimation procedures using evolutionary approaches:

A tale of dimensionality reduction. In Proceedings of the Multiple Criterion Decision Making Conference (MCDM ’08). 1–14.

Kalyanmoy Deb, Kaisa Miettinen, and Shamik Chaudhuri. 2010. Toward an estimation of nadir objective vector using

a hybrid of evolutionary and local search approaches. IEEE Transactions on Evolutionary Computation 14, 6 (2010),

821–841.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and Tamt Meyarivan. 2002. A fast and elitist multiobjective genetic algo-

rithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 2 (2002), 182–197.

Kalyanmoy Deb and Aravind Srinivasan. 2006. Innovization: Innovating design principles through optimization. In Pro-

ceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. 1629–1636.

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

https://ssrn.com/abstract=3792994

Exploring the Explainable Aspects and Performance of a LEMOO Method 4:37

Michael T. M. Emmerich and André H. Deutz. 2018. A tutorial on multiobjective optimization: Fundamentals and evolu-

tionary methods. Natural Computing 17, 3 (2018), 585–609.

Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M. Blau, and Sebastian Thrun. 2017.

Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 7639 (2017), 115–118.

Yoav Freund and Robert E. Schapire. 1997. A decision-theoretic generalization of on-line learning and an application to

boosting. Journal of Computer and System Sciences 55, 1 (1997), 119–139.

Nicolas Goix, Vighnesh Birodkar, Florian Gardin, Jean-Matthieu Schertzer, Hoebin Jeong, Manoj Kumar, Alexandre Gram-

fort, Tim Staley, Tom Dupré la Tour, Boyuan Deng, C, Fabian Pedregosa, Lawrence Wu, Ariel Rokem, Kyle Jackson, and

mrahim. 2020. scikit-learn-contrib/skope-rules v1.0.1. Retrieved October 23, 2023 from https://doi.org/10.5281/zenodo.

4316671

Bryce Goodman and Seth Flaxman. 2017. European union regulations on algorithmic decision-making and a “right to

explanation.” AI Magazine 38, 3 (2017), 50–57.

David Gunning and David Aha. 2019. DARPA’s explainable artificial intelligence (XAI) program. AI Magazine 40, 2 (2019),

44–58.

Jussi Hakanen, Kaisa Miettinen, and Kristian Sahlstedt. 2011. Wastewater treatment: New insight provided by interactive

multiobjective optimization. Decision Support Systems 51, 2 (2011), 328–337.

Jussi Hakanen, Kristian Sahlstedt, and Kaisa Miettinen. 2013. Wastewater treatment plant design and operation under

multiple conflicting objective functions. Environmental Modelling & Software 46 (2013), 240–249.

Ching-Lai Hwang and Abu Syed Md. Masud. 1979. Multiple Objective Decision Making: Methods and Applications. Springer,

Berlin, Germany.

Himanshu Jain and Kalyanmoy Deb. 2013. An evolutionary many-objective optimization algorithm using reference-point

based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach. IEEE Trans-

actions on Evolutionary Computation 18, 4 (2013), 602–622.

Laetitia Jourdan, David Corne, Dragan Savic, and Godfrey Walters. 2005. Preliminary investigation of the ‘learnable evolu-

tion model’ for faster/better multiobjective water systems design. In Evolutionary Multi-Criterion Optimization. Lecture

Notes in Computer Science, Vol. 3410. Springer, 841–855.

Uday Kamath and John Liu. 2021. Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning.

Springer.

Adhe Kania, Juha Sipilä, Giovanni Misitano, Kaisa Miettinen, and Jussi Lehtimäki. 2022. Integration of lot sizing and safety

strategy placement using interactive multiobjective optimization. Computers & Industrial Engineering 173 (2022), 108731.

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Bussonnier, Jonathan Frederic, Kyle

Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, and Carol Willing. 2016.

Jupyter notebooks—A publishing format for reproducible computational workflows. In Positioning and Power in Aca-

demic Publishing: Players, Agents and Agendas, F. Loizides and B. Schmidt (Eds.). IOS Press, 87–90.

Xingtao Liao, Qing Li, Xujing Yang, Weigang Zhang, and Wei Li. 2008. Multiobjective optimization for crash safety design

of vehicles using stepwise regression model. Structural and Multidisciplinary Optimization 35, 6 (2008), 561–569.

Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. 2020. Explainable AI: A review of machine learning

interpretability methods. Entropy 23, 1 (2020), 18.

Zachary C. Lipton. 2018. The mythos of model interpretability: In machine learning, the concept of interpretability is both

important and slippery. Queue 16, 3 (2018), 31–57.

Ruonan Liu, Boyuan Yang, Enrico Zio, and Xuefeng Chen. 2018. Artificial intelligence for fault diagnosis of rotating ma-

chinery: A review. Mechanical Systems and Signal Processing 108 (2018), 33–47.

Jie Lu, Guangquan Zhang, Da Ruan, and Fengjie Wu. 2007. Multi-Objective Group Decision Making. Imperial College Press.

Scott M. Lundberg and Su-In Lee. 2017. A unified approach to interpreting model predictions. In Proceedings of the 31st

International Conference on Neural Information Processing Systems (NIPS ’17). 4768–4777.

Michael D. McKay, Richard J. Beckman, and William J. Conover. 2000. A comparison of three methods for selecting values

of input variables in the analysis of output from a computer code. Technometrics 42, 1 (2000), 55–61.

Ryszard S. Michalski. 2000. Learnable evolution model: Evolutionary processes guided by machine learning. Machine Learn-

ing 38, 1 (2000), 9–40.

Kaisa Miettinen. 1999. Nonlinear Multiobjective Optimization. Kluwer Academic, Boston, MA.

Kaisa Miettinen, Jussi Hakanen, and Dmitry Podkopaev. 2016. Interactive nonlinear multiobjective optimization methods.

In Multiple Criteria Decision Analysis. Springer, 927–976.

Kaisa Miettinen and Marko M. Mäkelä. 1999. Comparative evaluation of some interactive reference point-based methods

for multi-objective optimisation. Journal of the Operational Research Society 50, 9 (1999), 949–959.

Kaisa Miettinen and Marko M. Mäkelä. 2002. On scalarizing functions in multiobjective optimization. OR Spectrum 24,

2 (2002), 193–213.

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

https://doi.org/10.5281/zenodo.4316671

4:38 G. Misitano

Kaisa Miettinen and Francisco Ruiz. 2016. NAUTILUS framework: Towards trade-off-free interaction in multiobjective

optimization. Journal of Business Economics 86 (2016), 5–21.

Kaisa Miettinen, Francisco Ruiz, and Andrzej P. Wierzbicki. 2008. Introduction to multiobjective optimization: Interactive

approaches. In Multiobjective Optimization. Springer, 27–57.

Giovanni Misitano. 2020. Interactively learning the preferences of a decision maker in multi-objective optimization utilizing

belief-rules. In Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI ’20). IEEE, Los Alamitos,

CA, 133–140.

Giovanni Misitano. 2023a. gialmisi/XLEMOO: Article Code. Retrieved October 23, 2023 from https://doi.org/10.5281/zenodo.

8318957

Giovanni Misitano. 2023b. XLEMOO Numerical Experiment Data. Retrieved October 23, 2023 from https://doi.org/10.5281/

zenodo.8085638

Giovanni Misitano, Bekir Afsar, Giomara Lárraga, and Kaisa Miettinen. 2022. Towards explainable interactive multiobjec-

tive optimization: R-XIMO. Autonomous Agents and Multi-Agent Systems 36, 2 (2022), 1–43.

Giovanni Misitano, Bhupinder Singh Saini, Bekir Afsar, Babooshka Shavazipour, and Kaisa Miettinen. 2021. DESDEO: The

modular and open source framework for interactive multiobjective optimization. IEEE Access 9 (2021), 148277–148295.

Felix Mölder, Kim Philipp Jablonski, Brice Letcher, Michael B. Hall, Christopher H. Tomkins-Tinch, Vanessa Sochat, Jan

Forster, Soohyun Lee, Sven O. Twardziok, Alexander Kanitz, et al. 2021. Sustainable data analysis with Snakemake.

F1000Research 10 (2021), 33.

Christoph Molnar. 2022. Interpretable Machine Learning (2nd ed.). Christoph Molnar. https://christophm.github.io/

interpretable-ml-book

Behzad Moradi. 2018. Multi-objective mobile robot path planning problem through learnable evolution model. Journal of

Experimental & Theoretical Artificial Intelligence 31, 2 (Nov. 2018), 325–348.

Behzad Moradi. 2019. The new optimization algorithm for the vehicle routing problem with time windows using multi-

objective discrete learnable evolution model. Soft Computing 24, 9 (2019), 6741–6769.

Behzad Moradi and Abdolreza Mirzaei. 2016. A new automated design method based on machine learning for CMOS analog

circuits. International Journal of Electronics 103, 11 (2016), 1868–1881.

Deepak Nagar, Palaniappan Ramu, and Kalyanmoy Deb. 2022. Visualization and analysis of Pareto-optimal fronts using

interpretable self-organizing map (iSOM). Swarm and Evolutionary Computation 76 (2022), 101202.

Sara Narteni, Melissa Ferretti, Vanessa Orani, Ivan Vaccari, Enrico Cambiaso, and Maurizio Mongelli. 2021. From explain-

able to reliable artificial intelligence. In Proceedings of the International Cross-Domain Conference for Machine Learning

and Knowledge Extraction. Springer, 255–273.

Yunyun Niu, Detian Kong, Rong Wen, Zhiguang Cao, and Jianhua Xiao. 2021. An improved learnable evolution model for

solving multi-objective vehicle routing problem with stochastic demand. Knowledge-Based Systems 230 (2021), 107378.

Tapabrata Ray, Hemant Kumar Singh, Kamrul Hasan Rahi, Tobias Rodemann, and Markus Olhofer. 2022. Towards identifi-

cation of solutions of interest for multi-objective problems considering both objective and variable space information.

Applied Soft Computing 119 (2022), 108505.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. “Why should I trust you?” Explaining the predictions of any

classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

1135–1144.

Steven L. Salzberg. 1994. C4. 5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993.

Kluwer Academic.

Yoshikazu Sawaragi, Hirotaka Nakayama, and Tetsuzo Tanino. 1985. Theory of Multiobjective Optimization. Elsevier.

Chandan Singh, Keyan Nasseri, Yan Shuo Tan, Tiffany Tang, and Bin Yu. 2021. imodels: A Python Package for Fitting

Interpretable Models. Retrieved October 23, 2023 from https://doi.org/10.21105/joss.03192

Henrik Smedberg and Sunith Bandaru. 2022. Interactive knowledge discovery and knowledge visualization for decision

support in multi-objective optimization. European Journal of Operational Research 306, 3 (2022), 1311–1329.

Ralph Steuer. 1989. Multiple Criteria Optimization: Theory, Computation, and Application. Krieger Publishing Company.

Roykrong Sukkerd, Reid Simmons, and David Garlan. 2018. Toward explainable multi-objective probabilistic planning. In

Proceedings of the 2018 IEEE/ACM 4th International Workshop on Software Engineering for Smart Cyber-Physical Systems

(SEsCPS ’18). IEEE, Los Alamitos, CA, 19–25.

El-Ghazali Talbi, Matthieu Basseur, Antonio J. Nebro, and Enrique Alba. 2012. Multi-objective optimization using meta-

heuristics: Non-standard algorithms. International Transactions in Operational Research 19, 1-2 (2012), 283–305.

Ryoji Tanabe and Hisao Ishibuchi. 2020. An easy-to-use real-world multi-objective optimization problem suite. Applied Soft

Computing 89 (2020), 106078.

Jasper van der Waa, Elisabeth Nieuwburg, Anita Cremers, and Mark Neerincx. 2021. Evaluating XAI: A comparison of

rule-based and example-based explanations. Artificial Intelligence 291 (2021), 103404.

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

https://doi.org/10.5281/zenodo.8318957
https://doi.org/10.5281/zenodo.8085638
https://christophm.github.io/interpretable-ml-book
https://doi.org/10.21105/joss.03192

Exploring the Explainable Aspects and Performance of a LEMOO Method 4:39

Jinkun Wang, Yezheng Liu, Jianshan Sun, Yuanchun Jiang, and Chunhua Sun. 2016. Diversified recommendation incorpo-

rating item content information based on MOEA/D. In Proceedings of the 2016 49th Hawaii International Conference on

System Sciences (HICSS ’16). IEEE, Los Alamitos, CA, 688–696.

Andrzej P. Wierzbicki. 1980. The use of reference objectives in multiobjective optimization. In Multiple Criteria Decision

Making Theory and Application. Springer, 468–486.

Andrzej P. Wierzbicki. 1982. A mathematical basis for satisficing decision making. Mathematical Modelling 3, 5 (1982),

391–405.

Bin Xin, Lu Chen, Jie Chen, Hisao Ishibuchi, Kaoru Hirota, and Bo Liu. 2018. Interactive multiobjective optimization: A

review of the state-of-the-art. IEEE Access 6 (2018), 41256–41279.

Huixin Zhan and Yongcan Cao. 2019. Relationship explainable multi-objective optimization via vector value function based

reinforcement learning. arXiv preprint arXiv:1910.01919 (2019).

Qingfu Zhang and Hui Li. 2007. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans-

actions on Evolutionary Computation 11, 6 (2007), 712–731.

Eckart Zitzler and Simon Künzli. 2004. Indicator-based selection in multiobjective search. In Proceedings of the International

Conference on Parallel Problem Solving from Nature. 832–842.

Received 15 November 2022; revised 16 September 2023; accepted 28 August 2023

ACM Transactions on Evolutionary Learning, Vol. 4, No. 1, Article 4. Publication date: February 2024.

