Näytä suppeat kuvailutiedot

dc.contributor.authorPrezja, Fabi
dc.contributor.authorAnnala, Leevi
dc.contributor.authorKiiskinen, Sampsa
dc.contributor.authorOjala, Timo
dc.date.accessioned2024-01-11T12:27:13Z
dc.date.available2024-01-11T12:27:13Z
dc.date.issued2024
dc.identifier.citationPrezja, F., Annala, L., Kiiskinen, S., & Ojala, T. (2024). Exploring the Efficacy of Base Data Augmentation Methods in Deep Learning-Based Radiograph Classification of Knee Joint Osteoarthritis. <i>Algorithms</i>, <i>17</i>(1), Article 8. <a href="https://doi.org/10.3390/a17010008" target="_blank">https://doi.org/10.3390/a17010008</a>
dc.identifier.otherCONVID_197554637
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/92694
dc.description.abstractDiagnosing knee joint osteoarthritis (KOA), a major cause of disability worldwide, is challenging due to subtle radiographic indicators and the varied progression of the disease. Using deep learning for KOA diagnosis requires broad, comprehensive datasets. However, obtaining these datasets poses significant challenges due to patient privacy and data collection restrictions. Additive data augmentation, which enhances data variability, emerges as a promising solution. Yet, it’s unclear which augmentation techniques are most effective for KOA. Our study explored data augmentation methods, including adversarial techniques. We used strategies like horizontal cropping and region of interest (ROI) extraction, alongside adversarial methods such as noise injection and ROI removal. Interestingly, rotations improved performance, while methods like horizontal split were less effective. We discovered potential confounding regions using adversarial augmentation, shown in our models’ accurate classification of extreme KOA grades, even without the knee joint. This indicated a potential model bias towards irrelevant radiographic features. Removing the knee joint paradoxically increased accuracy in classifying early-stage KOA. Grad-CAM visualizations helped elucidate these effects. Our study contributed to the field by pinpointing augmentation techniques that either improve or impede model performance, in addition to recognizing potential confounding regions within radiographic images of knee osteoarthritis.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMDPI
dc.relation.ispartofseriesAlgorithms
dc.rightsCC BY 4.0
dc.subject.otherknee joint osteoarthritis (KOA)
dc.subject.otherglobal disability
dc.subject.otherdata augmentation
dc.subject.othertechnique selection
dc.subject.otherdata variability
dc.subject.otherdeep learning
dc.subject.othertransfer learning
dc.subject.otheradversarial learning
dc.subject.otheradversarial augmentation
dc.titleExploring the Efficacy of Base Data Augmentation Methods in Deep Learning-Based Radiograph Classification of Knee Joint Osteoarthritis
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202401111195
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineComputing, Information Technology and Mathematicsfi
dc.contributor.oppiaineComputational Scienceen
dc.contributor.oppiaineComputing, Information Technology and Mathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1999-4893
dc.relation.numberinseries1
dc.relation.volume17
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 the Authors
dc.rights.accesslevelopenAccessfi
dc.subject.ysosyväoppiminen
dc.subject.ysonivelrikko
dc.subject.ysopolvet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p39324
jyx.subject.urihttp://www.yso.fi/onto/yso/p12334
jyx.subject.urihttp://www.yso.fi/onto/yso/p14204
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3390/a17010008
jyx.fundinginformationThis research received no external funding.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0