Näytä suppeat kuvailutiedot

dc.contributor.authorLiu, Jingyuan
dc.contributor.authorChang, Zheng
dc.contributor.authorMin, Geyong
dc.contributor.authorZhang, Yan
dc.date.accessioned2024-01-08T11:02:32Z
dc.date.available2024-01-08T11:02:32Z
dc.date.issued2023
dc.identifier.citationLiu, J., Chang, Z., Min, G., & Zhang, Y. (2023). Energy-Efficient and Privacy-Preserved Incentive Mechanism for Federated Learning in Mobile Edge Computing. <i>IEEE International Conference on Communications</i>, <i>2023</i>, 172-178. <a href="https://doi.org/10.1109/ICC45041.2023.10279757" target="_blank">https://doi.org/10.1109/ICC45041.2023.10279757</a>
dc.identifier.otherCONVID_197232266
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/92568
dc.description.abstractIn mobile edge computing (MEC)-assisted federated learning (FL), the MEC users can train data locally and send the results to the MEC server to update the global model. However, the implementation of FL may be prevented by the selfish nature of MEC users, as they need to contribute considerable data and computing resources while scarifying certain data privacy for the FL process. Therefore, it is of great importance to design an efficient incentive mechanism to motivate the users to join the FL. In this work, with explicit consideration of the impact of wireless transmission and data privacy, we design an energy-efficient and privacy-preserved incentive scheme to facilitate the FL process by investigating interactions between the MEC server and MEC users in a MEC-assisted FL system. Using a Stackelberg game model, we explore the transmit power allocation and privacy budget determination of MEC users and reward strategy of the MEC server, and then analyze the Stackelberg equilibrium. The simulation results demonstrate the effectiveness of our proposed scheme.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofseriesIEEE International Conference on Communications
dc.rightsIn Copyright
dc.titleEnergy-Efficient and Privacy-Preserved Incentive Mechanism for Federated Learning in Mobile Edge Computing
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-202401081070
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTekniikkafi
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingfi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineEngineeringen
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingen
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange172-178
dc.relation.issn1550-3607
dc.relation.volume2023
dc.type.versionacceptedVersion
dc.rights.copyright© 2023, IEEE
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceIEEE International Conference on Communications
dc.subject.ysotietosuoja
dc.subject.ysolangaton tiedonsiirto
dc.subject.ysoyksityisyys
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p3636
jyx.subject.urihttp://www.yso.fi/onto/yso/p5445
jyx.subject.urihttp://www.yso.fi/onto/yso/p10909
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1109/ICC45041.2023.10279757
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright