dc.contributor.author | Liu, Jingyuan | |
dc.contributor.author | Chang, Zheng | |
dc.contributor.author | Min, Geyong | |
dc.contributor.author | Zhang, Yan | |
dc.date.accessioned | 2024-01-08T11:02:32Z | |
dc.date.available | 2024-01-08T11:02:32Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Liu, J., Chang, Z., Min, G., & Zhang, Y. (2023). Energy-Efficient and Privacy-Preserved Incentive Mechanism for Federated Learning in Mobile Edge Computing. <i>IEEE International Conference on Communications</i>, <i>2023</i>, 172-178. <a href="https://doi.org/10.1109/ICC45041.2023.10279757" target="_blank">https://doi.org/10.1109/ICC45041.2023.10279757</a> | |
dc.identifier.other | CONVID_197232266 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/92568 | |
dc.description.abstract | In mobile edge computing (MEC)-assisted federated learning (FL), the MEC users can train data locally and send the results to the MEC server to update the global model. However, the implementation of FL may be prevented by the selfish nature of MEC users, as they need to contribute considerable data and computing resources while scarifying certain data privacy for the FL process. Therefore, it is of great importance to design an efficient incentive mechanism to motivate the users to join the FL. In this work, with explicit consideration of the impact of wireless transmission and data privacy, we design an energy-efficient and privacy-preserved incentive scheme to facilitate the FL process by investigating interactions between the MEC server and MEC users in a MEC-assisted FL system. Using a Stackelberg game model, we explore the transmit power allocation and privacy budget determination of MEC users and reward strategy of the MEC server, and then analyze the Stackelberg equilibrium. The simulation results demonstrate the effectiveness of our proposed scheme. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | IEEE | |
dc.relation.ispartofseries | IEEE International Conference on Communications | |
dc.rights | In Copyright | |
dc.title | Energy-Efficient and Privacy-Preserved Incentive Mechanism for Federated Learning in Mobile Edge Computing | |
dc.type | conference paper | |
dc.identifier.urn | URN:NBN:fi:jyu-202401081070 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tekniikka | fi |
dc.contributor.oppiaine | Secure Communications Engineering and Signal Processing | fi |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Engineering | en |
dc.contributor.oppiaine | Secure Communications Engineering and Signal Processing | en |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 172-178 | |
dc.relation.issn | 1550-3607 | |
dc.relation.volume | 2023 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2023, IEEE | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | conferenceObject | |
dc.relation.conference | IEEE International Conference on Communications | |
dc.subject.yso | tietosuoja | |
dc.subject.yso | langaton tiedonsiirto | |
dc.subject.yso | yksityisyys | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3636 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5445 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p10909 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1109/ICC45041.2023.10279757 | |
dc.type.okm | A4 | |