Nonheme FeIV═O Complexes Supported by Four Pentadentate Ligands : Reactivity toward H- and O- Atom Transfer Processes
Li, Y., Singh, R., Sinha, A., Lisensky, G. C., Haukka, M., Nilsson, J., Yiga, S., Demeshko, S., Gross, S. J., Dechert, S., Gonzalez, A., Farias, G., Wendt, O. F., Meyer, F., & Nordlander, E. (2023). Nonheme FeIV═O Complexes Supported by Four Pentadentate Ligands : Reactivity toward H- and O- Atom Transfer Processes. Inorganic Chemistry, 62(45), 18338-18356. https://doi.org/10.1021/acs.inorgchem.3c02526
Julkaistu sarjassa
Inorganic ChemistryTekijät
Li, Yong |
Päivämäärä
2023Oppiaine
Epäorgaaninen ja analyyttinen kemiaEpäorgaaninen kemiaInorganic and Analytical ChemistryInorganic ChemistryTekijänoikeudet
© 2023 The Authors. Published by American Chemical Society.
Four new pentadentate N5-donor ligands, [N-(1-methyl-2-imidazolyl)methyl-N-(2-pyridyl)-methyl-N-(bis-2-pyridylmethyl)-amine] (L1), [N-bis(1-methyl-2-imidazolyl)methyl-N-(bis-2-pyridylmethyl)amine] (L2), (N-(isoquinolin-3-ylmethyl)-1,1-di(pyridin-2-yl)-N-(pyridin-2-ylmethyl)methanamine (L3), and N,N-bis(isoquinolin-3-ylmethyl)-1,1-di(pyridin-2-yl)methanamine (L4), have been synthesized based on the N4Py ligand framework, where one or two pyridyl arms of the N4Py parent are replaced by (N-methyl)imidazolyl or N-(isoquinolin-3-ylmethyl) moieties. Using these four pentadentate ligands, the mononuclear complexes [FeII(CH3CN)(L1)]2+ (1a), [FeII(CH3CN)(L2)]2+ (2a), [FeII(CH3CN)(L3)]2+ (3a), and [FeII(CH3CN)(L4)]2+ (4a) have been synthesized and characterized. The half-wave potentials (E1/2) of the complexes become more positive in the order: 2a < 1a < 4a ≤ 3a ≤ [Fe(N4Py)(CH3CN)]2+. The order of redox potentials correlates well with the Fe–Namine distances observed by crystallography, which are 2a > 1a ≥ 4a > 3a ≥ [Fe(N4Py)(CH3CN)]2+. The corresponding ferryl complexes [FeIV(O)(L1)]2+ (1b), [FeIV(O)(L2)]2+ (2b), [FeIV(O)(L3)]2+ (3b), and [FeIV(O)(L4)]2+ (4b) were prepared by the reaction of the ferrous complexes with isopropyl 2-iodoxybenzoate (IBX ester) in acetonitrile. The greenish complexes 3b and 4b were also isolated in the solid state by the reaction of the ferrous complexes in CH3CN with ceric ammonium nitrate in water. Mössbauer spectroscopy and magnetic measurements (using superconducting quantum interference device) show that the four complexes 1b, 2b, 3b, and 4b are low-spin (S = 1) FeIV═O complexes. UV/vis spectra of the four FeIV═O complexes in acetonitrile show typical long-wavelength absorptions of around 700 nm, which are expected for FeIV═O complexes with N4Py-type ligands. The wavelengths of these absorptions decrease in the following order: 721 nm (2b) > 706 nm (1b) > 696 nm (4b) > 695 nm (3b) = 695 nm ([FeIV(O) (N4Py)]2+), indicating that the replacement of the pyridyl arms with (N-methyl) imidazolyl moieties makes L1 and L2 exert weaker ligand fields than the parent N4Py ligand, while the ligand field strengths of L3 and L4 are similar to the N4Py parent despite the replacement of the pyridyl arms with N-(isoquinolin-3-ylmethyl) moieties. Consequently, complexes 1b and 2b tend to be less stable than the parent [FeIV(O)(N4Py)]2+ complex: the half-life sequence at room temperature is 1.67 h (2b) < 16 h (1b) < 45 h (4b) < 63 h (3b) ≈ 60 h ([FeIV(O)(N4Py)]2+). Compared to the parent complex, 1b and 2b exhibit enhanced reactivity in both the oxidation of thioanisole in the oxygen atom transfer (OAT) reaction and the oxygenation of C–H bonds of aromatic and aliphatic substrates, presumed to occur via an oxygen rebound process. Furthermore, the second-order rate constants for hydrogen atom transfer (HAT) reactions affected by the ferryl complexes can be directly related to the C–H bond dissociation energies of a range of substrates that have been studied. Using either IBX ester or H2O2 as an oxidant, all four new FeII complexes display good performance in catalytic reactions involving both HAT and OAT reactions.
...
Julkaisija
American Chemical SocietyISSN Hae Julkaisufoorumista
0020-1669Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/194481495
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
The work has been supported by the Deutsche Forschungsgemeinschaft (DFG) in the framework of the Research Unit 5215 (FOR 5251 “Bioinspired Oxidation Catalysis with Iron Complexes”; project Me1313/18-1/445916766 to F.M.). Purchase of the Bruker D8-QUEST diffractometer as well as of the Mössbauer spectrometer with magnet cryostat was enabled by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) and the Niedersächsische Ministerium für Wissenschaft und Kultur (MWK), project numbers 423268549 (INST 186/1087 1327-1 FUGG) and 424956795 (INST 186/1332-1 FUGG), respectively. Y.L. and E.N. thank the Royal Physiographic Society for funding. S.Y. and O.F.W. thank the SIDA bilateral program for financial support. Y.L. thanks the Chinese Scholarship Council for a predoctoral fellowship. G.C.L. thanks the Wenner-Gren Foundation for a visiting fellowship to Lund University. ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Oxygen Transfer from Trimethylamine N-oxide to CuI Complexes Supported by Pentanitrogen Ligands
Ramírez, Erick; Hossain, Kamal; Flores-Alamo, Marcos; Haukka, Matti; Nordlander, Ebbe; Castillo, Ivan (Wiley-VCH Verlag, 2020)[N,N-bis(1-methyl-2-benzimidazolyl)methyl-N-(bis-2-pyridylmethyl)amine] ( L 1 ) and [N,N-bis(2-quinolylmethyl)-N-bis(2-pyridyl)methylamine] ( L 2 ) were employed to prepare Cu II and Cu I complexes for spectroscopic and ... -
Oxidovanadium(V) complexes with tridentate hydrazone ligands as oxygen atom transfer catalysts
Hossain, Md Kamal; Haukka, Matti; Lisensky, George C.; Richmond, Michael G.; Nordlander, Ebbe (Elsevier, 2024)Four isostructural oxovanadium(V) complexes with hydrazone ligands have been synthesised, characterised, and evaluated as epoxidation and sulfoxidation catalysts. The reactions between [VO(acac)2] (acac– = acetylacetonate) ... -
Dioxomolybdenum(VI) complexes of hydrazone phenolate ligands -syntheses and activities in catalytic oxidation reactions
Hossain, Md. Kamal; Plutenko, Maxym O.; Schachner, Jörg A.; Haukka, Matti; Mösch-Zanetti, Nadia C.; Fritsky, Igor O.; Nordlander, Ebbe (Elsevier B.V.; Indian Chemical Society, 2021)The new cis-dioxomolybdenum(VI) complexes [MoO2(L2)(H2O)] (2) and [MoO2(L3) (H2O)] (3) containing the tridentate hydrazone-based ligands (H2L2 = N'-(3,5-di-tert-butyl-2-hydroxybenzylidene)-4-methylbenzohydrazide and H2L3 ... -
NIR-absorbing transition metal complexes with redox-active ligands
Salojärvi, Esko; Peuronen, Anssi; Huhtinen, Hannu; Vlasenko, Leonid S.; Halme, Janne; Mäkinen, Pyry; Lastusaari, Mika; Lehtonen, Ari (Elsevier BV, 2020)Bench top stable transition metal (M = Co, Ni, Cu) complexes with a non-innocent ortho-aminophenol derivative were synthesized by the reaction of metal(II)acetates with a ligand precursor in 2:1 ratio. The solid-state ... -
Coadsorption of NRR and HER Intermediates Determines the Performance of Ru-N4 toward Electrocatalytic N2 Reduction
Wu, Tongwei; Melander, Marko M.; Honkala, Karoliina (American Chemical Society (ACS), 2022)Electrochemical N2 reduction (NRR) to ammonia is seriously limited by the competing hydrogen evolution reaction (HER), but atomic-scale factors controlling HER/NRR competition are unknown. Herein we unveil the mechanism, ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.