Nowcasting the nowcasting : Forecasting ISM Business surveys (PMI and NSI) with weekly Google trends
Heikkinen, J., & Heimonen, K. (2023). Nowcasting the nowcasting : Forecasting ISM Business surveys (PMI and NSI) with weekly Google trends. Applied Economics, Early online. https://doi.org/10.1080/00036846.2023.2273235
Published in
Applied EconomicsDate
2023Discipline
Päätöksentekoa tukeva taloustiede ja talouden kilpailukyky (painoala)Jyväskylä International Macro & FinanceHyvinvoinnin tutkimuksen yhteisöTaloustiedePolicy-Relevant Economics and Competitiveness of Economy (focus area)Jyväskylä International Macro & FinanceSchool of WellbeingEconomicsCopyright
© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
Changes in economic conditions can occur suddenly with drastic effects. However, economic statistics are published with significant lags, e.g. GDP, and more timely information about the economy is required. Nowcasting methods have become widely popular for providing up-to-date information about the current economic stance. This study adds a novel idea to the previous literature by nowcasting the nowcasting, i.e. the purchasing manager’s index (PMI) and the non-manufacturing survey index (NSI) of the ISM Business survey indicators with the weekly Google Trends data. We used two-dimension reduction methods: the principal component analysis (PCA) and partial least squares (PLS) to eliminate ‘the curse of dimensionality’. Pseudo-out-of-sample exercises performed with different Google Trends search categories indicated that Google Search data is able to generate useful information to nowcast the nowcasting. In particular, we contribute the existing literature that weekly Google Search data can nowcast the monthly PMI and NSI.
...
Publisher
RoutledgeISSN Search the Publication Forum
0003-6846Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/194457999
Metadata
Show full item recordCollections
- Kauppakorkeakoulu [1381]
Related funder(s)
OP Group Research FoundationFunding program(s)
FoundationAdditional information about funding
This work was supported by the Jenny ja Antti Wihurin Rahasto; Jyväskylän Yliopisto; OP Group Research foundation; Yrjö Jahnssonin Säätiö.License
Related items
Showing items with similar title or keywords.
-
Nowcasting GDP growth using Google trends
Heikkinen, Joni (2019)Tässä Pro gradu -tutkielmassa tutkitaan Google Trends -aineiston kykyä nowcasting ennustaa Saksan ja Suomen talouskasvua eli bruttokansantuotetta (BKT). Nowcasting pyrkii ennustamaan nykyistä taloudellista tilannetta. ... -
Dynamics of the Shapovalov mid-size firm model
Alexeeva, Tatyana A.; Barnett, William A.; Kuznetsov, Nikolay V.; Mokaev, Timur N. (Elsevier, 2020)Forecasting and analyses of the dynamics of financial and economic processes such as deviations of macroeconomic aggregates (GDP, unemployment, and inflation) from their long-term trends, asset markets volatility, etc., ... -
Forecasting real economic activity and inflation : the role of geopolitical risks and economic policy uncertainty in major economies
Hundal, Amaya (2023)The increasing prominence of geopolitical risks and economic policy uncertainties globally has brought their impacts on overall economies to the forefront in both academia and policymaking. Current literature, while being ... -
Machine learning in macroeconomic forecasting
Nyholm, Sebastian (2022)Dataa on aina ollut saatavilla paljon taloudesta, mutta sen kaiken käyttäminen talouden ennustamisessa on ollut hankalaa. Perinteiset ennustamisen ja arvioinnin mallit eivät ole osoittautuneet olevan kovin tarkkoja ... -
Household optimism and overborrowing
Hyytinen, Ari; Putkuri, Hanna (Ohio State University Press; John Wiley & Sons, Inc., 2018)We use Finnish household-level data from 1994 to 2013 to measure how often and what kind of forecast errors households make and how the errors are linked to the households' borrowing behavior and overindebtedness. We find ...