Kurt Gödelin epätäydellisyyslauseiden vaikutuksista David Hilbertin ohjelmaan
Tekijät
Päivämäärä
2004Pääsyrajoitukset
Aineistoon pääsyä on rajoitettu tekijänoikeussyistä. Aineisto on luettavissa Jyväskylän yliopiston kirjaston arkistotyöasemalta. Ks. https://kirjasto.jyu.fi/kokoelmat/arkistotyoasema.
Tekijänoikeudet
Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten Käyttö kaupallisiin tarkoituksiin on kielletty.
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Hilbertin avaruudet ja kompaktit operaattorit
Pajala, Topi (2020)Tässä työssä tutkitaan Hilbertin avaruuksia, kompakteja operaattoreita Hilbertin avaruuksissa ja sitä, miten kompaktien operaattoreiden avulla on mahdollista muodostaa kanta Hilbertin avaruudelle. Kompakteilla operaattoreilla ... -
Adapting Formal Logic for Everyday Mathematics
Valmari, Antti (SCITEPRESS - Science and Technology Publications, 2022)Although logic is considered central to mathematics and computer science, there is evidence that teaching logic has not been a great success. We identify three issues where what is typically taught conflicts with what is ... -
Vektoriavaruudet ja niiden representaatiot
Hietala, Roope (2022)Tässä työssä tutkitaan erilaisia representaatioita vektoriavaruuksille sekä Hilbertin avaruuden rakennetta. Hilbertin avaruudet ovat täydellisiä sisätuloavaruuksia, jotka ovat yleistys euklidiselle avaruudelle. Tavoitteena ... -
Spectral theory for unbounded self-adjoint operators
Penttala, Jani (2023)Tässä tutkielmassa keskitytään rajoittamattomien itseadjungoitujen operaattorien spektraaliteoriaan. Tutkielman päätulos on tällaisten operattorien spektraalilause, jonka mukaan mikä tahansa rajoittamaton itseadjungoitu ... -
Hilbertin avaruudet
Virtanen, Ida (2021)Tämän tutkielman tarkoituksena on tutustuttaa lukija Hilbertin avaruuksiin ja niiden hyödyllisyyteen ääretönulotteisen vektoriavaruuden tarkastelussa. Äärellisulotteisesta lineaarialgebrasta tuttu tulos, projektiolause, ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.