dc.contributor.author | Antonelli, Gioacchino | |
dc.contributor.author | Pasqualetto, Enrico | |
dc.contributor.author | Pozzetta, Marco | |
dc.contributor.author | Violo, Ivan Yuri | |
dc.date.accessioned | 2023-10-11T06:39:51Z | |
dc.date.available | 2023-10-11T06:39:51Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Antonelli, G., Pasqualetto, E., Pozzetta, M., & Violo, I. Y. (2023). Topological regularity of isoperimetric sets in PI spaces having a deformation property. <i>Proceedings of the Royal Society of Edinburgh Section A: Mathematics</i>, <i>Early online</i>. <a href="https://doi.org/10.1017/prm.2023.105" target="_blank">https://doi.org/10.1017/prm.2023.105</a> | |
dc.identifier.other | CONVID_193377535 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/89706 | |
dc.description.abstract | We prove topological regularity results for isoperimetric sets in PI spaces having a suitable deformation property, which prescribes a control on the increment of the perimeter of sets under perturbations with balls. More precisely, we prove that isoperimetric sets are open, satisfy boundary density estimates and, under a uniform lower bound on the volumes of unit balls, are bounded. Our results apply, in particular, to the class of possibly collapsed RCD(K,N) spaces. As a consequence, the rigidity in the isoperimetric inequality on possibly collapsed RCD(0,N) spaces with Euclidean volume growth holds without the additional assumption on the boundedness of isoperimetric sets. Our strategy is of interest even in the Euclidean setting, as it simplifies some classical arguments. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Cambridge University Press | |
dc.relation.ispartofseries | Proceedings of the Royal Society of Edinburgh Section A: Mathematics | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.subject.other | isoperimetric set | |
dc.subject.other | PI space | |
dc.subject.other | deformation property | |
dc.subject.other | RCD space | |
dc.subject.other | regularity | |
dc.title | Topological regularity of isoperimetric sets in PI spaces having a deformation property | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202310115754 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0308-2105 | |
dc.relation.volume | Early online | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2023, Cambridge University Press | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | variaatiolaskenta | |
dc.subject.yso | differentiaaligeometria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p11197 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16682 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.1017/prm.2023.105 | |
dc.type.okm | A1 | |