Show simple item record

dc.contributor.authorAntonelli, Gioacchino
dc.contributor.authorPasqualetto, Enrico
dc.contributor.authorPozzetta, Marco
dc.contributor.authorViolo, Ivan Yuri
dc.date.accessioned2023-10-11T06:39:51Z
dc.date.available2023-10-11T06:39:51Z
dc.date.issued2023
dc.identifier.citationAntonelli, G., Pasqualetto, E., Pozzetta, M., & Violo, I. Y. (2023). Topological regularity of isoperimetric sets in PI spaces having a deformation property. <i>Proceedings of the Royal Society of Edinburgh Section A: Mathematics</i>, <i>Early online</i>. <a href="https://doi.org/10.1017/prm.2023.105" target="_blank">https://doi.org/10.1017/prm.2023.105</a>
dc.identifier.otherCONVID_193377535
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/89706
dc.description.abstractWe prove topological regularity results for isoperimetric sets in PI spaces having a suitable deformation property, which prescribes a control on the increment of the perimeter of sets under perturbations with balls. More precisely, we prove that isoperimetric sets are open, satisfy boundary density estimates and, under a uniform lower bound on the volumes of unit balls, are bounded. Our results apply, in particular, to the class of possibly collapsed RCD(K,N) spaces. As a consequence, the rigidity in the isoperimetric inequality on possibly collapsed RCD(0,N) spaces with Euclidean volume growth holds without the additional assumption on the boundedness of isoperimetric sets. Our strategy is of interest even in the Euclidean setting, as it simplifies some classical arguments.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherCambridge University Press
dc.relation.ispartofseriesProceedings of the Royal Society of Edinburgh Section A: Mathematics
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherisoperimetric set
dc.subject.otherPI space
dc.subject.otherdeformation property
dc.subject.otherRCD space
dc.subject.otherregularity
dc.titleTopological regularity of isoperimetric sets in PI spaces having a deformation property
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202310115754
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0308-2105
dc.relation.volumeEarly online
dc.type.versionacceptedVersion
dc.rights.copyright© 2023, Cambridge University Press
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysovariaatiolaskenta
dc.subject.ysodifferentiaaligeometria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p11197
jyx.subject.urihttp://www.yso.fi/onto/yso/p16682
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1017/prm.2023.105
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC-ND 4.0
Except where otherwise noted, this item's license is described as CC BY-NC-ND 4.0