Show simple item record

dc.contributor.authorYim, Jihong
dc.contributor.authorHaimi, Eero
dc.contributor.authorMäntymäki, Miia
dc.contributor.authorKärkäs, Ville
dc.contributor.authorBes, René
dc.contributor.authorGutierrez, Aitor Arandia
dc.contributor.authorMeinander, Kristoffer
dc.contributor.authorBrüner, Philipp
dc.contributor.authorGrehl, Thomas
dc.contributor.authorGell, Lars
dc.contributor.authorViinikainen, Tiia
dc.contributor.authorHonkala, Karoliina
dc.contributor.authorHuotari, Simo
dc.contributor.authorKarinen, Reetta
dc.contributor.authorPutkonen, Matti
dc.contributor.authorPuurunen, Riikka L.
dc.date.accessioned2023-10-03T11:21:57Z
dc.date.available2023-10-03T11:21:57Z
dc.date.issued2023
dc.identifier.citationYim, J., Haimi, E., Mäntymäki, M., Kärkäs, V., Bes, R., Gutierrez, A. A., Meinander, K., Brüner, P., Grehl, T., Gell, L., Viinikainen, T., Honkala, K., Huotari, S., Karinen, R., Putkonen, M., & Puurunen, R. L. (2023). Atomic Layer Deposition of Zinc Oxide on Mesoporous Zirconia Using Zinc(II) Acetylacetonate and Air. <i>Chemistry of Materials</i>, <i>35</i>(19), 7915-7930. <a href="https://doi.org/10.1021/acs.chemmater.3c00668" target="_blank">https://doi.org/10.1021/acs.chemmater.3c00668</a>
dc.identifier.otherCONVID_189014783
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/89364
dc.description.abstractThe self-terminating chemistry of atomic layer deposition (ALD) ideally enables the growth of homogeneously distributed materials on the atomic scale. This study investigates the ALD of zinc oxide (ZnO) on mesoporous zirconium oxide (ZrO2) using zinc acetylacetonate [Zn(acac)2] and synthetic air in a fixed-bed powder ALD reactor. A broad variety of methods, including thermogravimetry analysis, scanning electron microscopy with energy-dispersive X-ray spectroscopy, low-energy ion scattering, X-ray absorption near-edge structure, X-ray photoelectron spectroscopy, in-situ diffuse reflectance infrared Fourier transform spectroscopy–mass spectrometry, and density functional theory calculations, were used to analyze the reactant and the resulting samples. The factors affecting the zinc loading (wt %) on ZrO2 were investigated by varying the ALD reaction temperature (160–240 °C), the calcination temperature of zirconium oxide (400–1000 °C), and the ALD cycle number (up to three). The studied process showed self-terminating behavior with the areal number density of zinc of approximately two atoms per square nanometer per cycle. Zinc was distributed throughout ZrO2. After the Zn(acac)2 reaction, acac ligands were removed using synthetic air at 500 °C. In the following cycles, already-deposited ZnO acted as nuclei for further ZnO growth. This study demonstrates the potential of Zn(acac)2 as an ALD reactant and provides an initial understanding of ZnO growth via ALD on high surface area porous particles as an example for catalytic applications.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.ispartofseriesChemistry of Materials
dc.rightsCC BY 4.0
dc.subject.otheratmospheric chemistry
dc.subject.otheratomic layer deposition
dc.subject.otherligands
dc.subject.otheroxides
dc.subject.otherzinc
dc.titleAtomic Layer Deposition of Zinc Oxide on Mesoporous Zirconia Using Zinc(II) Acetylacetonate and Air
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202310035384
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineNanoscience Centeren
dc.contributor.oppiainePhysical Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange7915-7930
dc.relation.issn0897-4756
dc.relation.numberinseries19
dc.relation.volume35
dc.type.versionpublishedVersion
dc.rights.copyright© The Authors. Published by American Chemical Society
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber329977
dc.subject.ysooksidit
dc.subject.ysoatomikerroskasvatus
dc.subject.ysosinkki (metallit)
dc.subject.ysoilmakemia
dc.subject.ysoligandit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p2803
jyx.subject.urihttp://www.yso.fi/onto/yso/p27468
jyx.subject.urihttp://www.yso.fi/onto/yso/p15062
jyx.subject.urihttp://www.yso.fi/onto/yso/p26207
jyx.subject.urihttp://www.yso.fi/onto/yso/p24741
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1021/acs.chemmater.3c00668
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Programme, AoFen
jyx.fundingprogramAkatemiaohjelma, SAfi
jyx.fundinginformationThe work was financially supported by Prof. Puurunen’s starting grant at Aalto University and by the Academy of Finland (COOLCAT consortium, decision no. 329977 and 329978; ALDI consortium, decision no. 331082; Matter and Materials, decision no. 318913 and decision no. 295696).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0