DFT Prediction of Enhanced Reducibility of Monoclinic Zirconia upon Rhodium Deposition
Abstract
Oxides are an important class of materials and are widely used, for example, as supports in heterogeneous catalysis. In a number of industrial catalytic processes, oxide supports actively participate in chemical transformations by releasing lattice oxygen anions. While this is intuitively understood for reducible oxides, the reducibility of irreducible oxides may be modified via nanoengineering or upon inclusion of foreign species. Our calculations predict that the ability of irreducible monoclinic zirconia to release oxygen improves substantially upon deposition of rhodium. Through a comprehensive screening of Rh/ZrO2 with different size of the rhodium species, we find that a Rh adatom and a Rh4 nanocluster have the largest impact on the reducibility of zirconia. With increasing size the effect of rhodium decays. Our findings demonstrate that the phenomenon of enhanced reducibility of irreducible oxides in the presence of metals should be considered when interpreting experimental and computational results, as reactions that involve release of oxygen from an oxide support might be possible for irreducible oxides.
Main Authors
Format
Articles
Research article
Published
2018
Series
Subjects
Publication in research information system
Publisher
American Chemical Society
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201803291879Use this for linking
Review status
Peer reviewed
ISSN
1932-7447
DOI
https://doi.org/10.1021/acs.jpcc.8b01046
Language
English
Published in
Journal of Physical Chemistry C
Citation
- Bazhenov, A., Kauppinen, M., & Honkala, K. (2018). DFT Prediction of Enhanced Reducibility of Monoclinic Zirconia upon Rhodium Deposition. Journal of Physical Chemistry C, 122(12), 6774-6778. https://doi.org/10.1021/acs.jpcc.8b01046
Copyright© 2018 American Chemical Society.