dc.contributor.author | Wu, Tongwei | |
dc.contributor.author | Melander, Marko M. | |
dc.contributor.author | Honkala, Karoliina | |
dc.date.accessioned | 2023-09-27T07:13:56Z | |
dc.date.available | 2023-09-27T07:13:56Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Wu, T., Melander, M. M., & Honkala, K. (2023). Theoretical advances in understanding the active site microenvironment toward the electrocatalytic nitrogen reduction reaction in aqueous media. <i>Current Opinion in Electrochemistry</i>, <i>42</i>, Article 101383. <a href="https://doi.org/10.1016/j.coelec.2023.101383" target="_blank">https://doi.org/10.1016/j.coelec.2023.101383</a> | |
dc.identifier.other | CONVID_184584158 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/89255 | |
dc.description.abstract | The electrocatalytic nitrogen reduction reaction (eNRR) in aqueous media has received substantial attention because it enables the direct conversion of N2 to NH3 under benign conditions. There are, however, many factors limiting the overall eNRR efficiency, including the competing hydrogen evolution reaction (HER) and sluggish reaction kinetics due to a strong N≡N bond. These challenges call for more systematic theoretical insight into the eNRR reaction mechanism to guide the rational optimization of experimental designs. In this review, we present the latest computational advances in eNRR in an aqueous medium, including the key aspects of both catalyst design and proton accessibility. Specifically, we discuss the importance of constant potential and explicit solvent simulations, the role of the electrochemical interface, and the impact of the active center microenvironment on eNRR activity and selectivity. Finally, the current challenges and the future prospects for eNRR are addressed. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Current Opinion in Electrochemistry | |
dc.rights | CC BY 4.0 | |
dc.subject.other | electrocatalysis | |
dc.subject.other | ambient NH3 synthesis | |
dc.subject.other | microenvironment | |
dc.subject.other | theoretical calculations | |
dc.title | Theoretical advances in understanding the active site microenvironment toward the electrocatalytic nitrogen reduction reaction in aqueous media | |
dc.type | review article | |
dc.identifier.urn | URN:NBN:fi:jyu-202309275266 | |
dc.contributor.laitos | Kemian laitos | fi |
dc.contributor.laitos | Department of Chemistry | en |
dc.contributor.oppiaine | Resurssiviisausyhteisö | fi |
dc.contributor.oppiaine | Nanoscience Center | fi |
dc.contributor.oppiaine | Fysikaalinen kemia | fi |
dc.contributor.oppiaine | School of Resource Wisdom | en |
dc.contributor.oppiaine | Nanoscience Center | en |
dc.contributor.oppiaine | Physical Chemistry | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_dcae04bc | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2451-9103 | |
dc.relation.volume | 42 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2023 the Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 351583 | |
dc.relation.grantnumber | 317739 | |
dc.relation.grantnumber | 338228 | |
dc.relation.grantnumber | 329977 | |
dc.subject.yso | elektrokatalyysi | |
dc.subject.yso | typpi | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38660 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p10988 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1016/j.coelec.2023.101383 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Others, AoF | en |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | Academy Programme, AoF | en |
jyx.fundingprogram | Muut, SA | fi |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundingprogram | Akatemiaohjelma, SA | fi |
jyx.fundinginformation | This work was supported by the National Natural Science Foundation of China (Nos. 52202214 and 52001059), Sichuan Natural Science Foundation (No. 2023NSFSC0954). T.W. also acknowledges the support by the China National Postdoctoral Program for Innovative Talents (No. BX2021053) and China Postdoctoral Science Foundation (No.2021M700680). MMM was supported by the Research Council of Finland (grant #338228). KH gratefully acknowledge support by the Research Council of Finland (grant numbers 317739, 329977, and 351583), and the Jane and Aatos Erkko Foundation (funding to the LACOR project). | |
dc.type.okm | A2 | |