Theoretical advances in understanding the active site microenvironment toward the electrocatalytic nitrogen reduction reaction in aqueous media
Wu, T., Melander, M. M., & Honkala, K. (2023). Theoretical advances in understanding the active site microenvironment toward the electrocatalytic nitrogen reduction reaction in aqueous media. Current Opinion in Electrochemistry, 42, Article 101383. https://doi.org/10.1016/j.coelec.2023.101383
Julkaistu sarjassa
Current Opinion in ElectrochemistryPäivämäärä
2023Oppiaine
ResurssiviisausyhteisöNanoscience CenterFysikaalinen kemiaSchool of Resource WisdomNanoscience CenterPhysical ChemistryTekijänoikeudet
© 2023 the Authors
The electrocatalytic nitrogen reduction reaction (eNRR) in aqueous media has received substantial attention because it enables the direct conversion of N2 to NH3 under benign conditions. There are, however, many factors limiting the overall eNRR efficiency, including the competing hydrogen evolution reaction (HER) and sluggish reaction kinetics due to a strong N≡N bond. These challenges call for more systematic theoretical insight into the eNRR reaction mechanism to guide the rational optimization of experimental designs. In this review, we present the latest computational advances in eNRR in an aqueous medium, including the key aspects of both catalyst design and proton accessibility. Specifically, we discuss the importance of constant potential and explicit solvent simulations, the role of the electrochemical interface, and the impact of the active center microenvironment on eNRR activity and selectivity. Finally, the current challenges and the future prospects for eNRR are addressed.
...
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
2451-9103Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/184584158
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Muut, SA; Akatemiahanke, SA; Akatemiatutkija, SA; Akatemiaohjelma, SALisätietoja rahoituksesta
This work was supported by the National Natural Science Foundation of China (Nos. 52202214 and 52001059), Sichuan Natural Science Foundation (No. 2023NSFSC0954). T.W. also acknowledges the support by the China National Postdoctoral Program for Innovative Talents (No. BX2021053) and China Postdoctoral Science Foundation (No.2021M700680). MMM was supported by the Research Council of Finland (grant #338228). KH gratefully acknowledge support by the Research Council of Finland (grant numbers 317739, 329977, and 351583), and the Jane and Aatos Erkko Foundation (funding to the LACOR project). ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Cation-induced changes in the inner- and outer-sphere mechanisms of electrocatalytic CO2 reduction
Qin, Xueping; Hansen, Heine A.; Honkala, Karoliina; Melander, Marko M. (Nature Publishing Group, 2023)The underlying mechanism of cation effects on CO2RR remains debated. Herein, we study cation effects by simulating both outer-sphere electron transfer (OS-ET) and inner-sphere electron transfer (IS-ET) pathways during CO2RR ... -
Synthesis of phosphine derivatives of [Fe2(CO)6(μ-sdt)] (sdt = SCH2SCH2S) and investigation of their proton reduction capabilities
Hizbullah, Lintang; Rahaman, Ahibur; Safavi, Seyedeh; Haukka, Matti; Tocher, Derek A.; Lisensky, George C.; Nordlander, Ebbe (Elsevier BV, 2023)The reactions of [Fe2(CO)6(μ-sdt)] (1) (sdt = SCH2SCH2S) with phosphine ligands have been investigated. Treatment of 1 with dppm (bis(diphenylphosphino)methane) or dcpm (bis(dicyclohexylphosphino)methane) affords the ... -
Coadsorption of NRR and HER Intermediates Determines the Performance of Ru-N4 toward Electrocatalytic N2 Reduction
Wu, Tongwei; Melander, Marko M.; Honkala, Karoliina (American Chemical Society (ACS), 2022)Electrochemical N2 reduction (NRR) to ammonia is seriously limited by the competing hydrogen evolution reaction (HER), but atomic-scale factors controlling HER/NRR competition are unknown. Herein we unveil the mechanism, ... -
Cations Determine the Mechanism and Selectivity of Alkaline Oxygen Reduction Reaction on Pt(111)
Kumeda, Tomoaki; Laverdure, Laura; Honkala, Karoliina; Melander, Marko M.; Sakaushi, Ken (Wiley-VCH Verlag, 2023)The proton-coupled electron transfer (PCET) mechanism of the oxygen reduction reaction (ORR) is a long-standing enigma in electrocatalysis. Despite decades of research, the factors determining the microscopic mechanism of ... -
Proton reduction by phosphinidene-capped triiron clusters
Rahaman, Ahibur; Lisensky, George C.; Haukka, Matti; Tocher, Derek A.; Richmond, Michael G.; Colbran, Stephen B.; Nordlander, Ebbe (Elsevier BV, 2021)Bis(phosphinidene)-capped triiron carbonyl clusters, including electron rich derivatives formed by substitution with chelating diphosphines, have been prepared and examined as proton reduction catalysts. Treatment of the ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.