HyperBlend leaf simulator : improvements on simulation speed, generalizability, and parameterization
Riihiaho, K. A., Lind, L., & Pölönen, I. (2023). HyperBlend leaf simulator : improvements on simulation speed, generalizability, and parameterization. Journal of Applied Remote Sensing, 17(3), Article 038505. https://doi.org/10.1117/1.JRS.17.038505
Julkaistu sarjassa
Journal of Applied Remote SensingPäivämäärä
2023Oppiaine
Computing, Information Technology and MathematicsLaskennallinen tiedeTietotekniikkaComputing, Information Technology and MathematicsComputational ScienceMathematical Information TechnologyTekijänoikeudet
© The Authors. Published by SPIE
In recent decades, remote sensing of vegetation by hyperspectral imaging has been of great interest. An important part in interpreting the remotely sensed spectral data is played by simulators, which approximate the connection between plants’ biophysical and biochemical properties and detected spectral response. We introduce improvements and new features to recently published hyperspectral leaf model HyperBlend. We present two methods for increasing simulation speed of the model up to 200 times faster with slight decrease in simulation accuracy. We integrate the well-known PROSPECT leaf model into HyperBlend allowing us to use the PROSPECT parametrization for leaf simulation. For the first time, we show that HyperBlend generalizes well and can be used to accurately simulate a wide variety of plant leaf spectra. HyperBlend is available as an open-source Python project under MIT license in a GitHub repository available at: https://github.com/silmae/hyperblend.
Julkaisija
SPIEISSN Hae Julkaisufoorumista
1931-3195Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/184874177
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
This study was funded by the Academy of Finland (Grant No. 327862). The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Differentiating Malignant from Benign for Melanocytic and Non-melanocytic Skin Tumors : A Pilot Study on Hyperspectral Imaging and Convolutional Neural Networks
Lindholm, Vivian; Raita-Hakola, Anna-Maria; Annala, Leevi; Salmivuori, Mari; Jeskanen, Leila; Koskenmies, Sari; Pitkänen, Sari; Saari, Heikki; Pölönen, Ilkka; Isoherranen, Kirsi; Ranki, Annamari (Society for Publication of Acta Dermato-Venereologica, 2022) -
Differentiating Malignant from Benign Pigmented or Non-Pigmented Skin Tumours : A Pilot Study on 3D Hyperspectral Imaging of Complex Skin Surfaces and Convolutional Neural Networks
Lindholm, Vivian; Raita-Hakola, Anna-Maria; Annala, Leevi; Salmivuori, Mari; Jeskanen, Leila; Saari, Heikki; Koskenmies, Sari; Pitkänen, Sari; Pölönen, Ilkka; Isoherranen, Kirsi; Ranki, Annamari (MDPI AG, 2022)Several optical imaging techniques have been developed to ease the burden of skin cancer disease on our health care system. Hyperspectral images can be used to identify biological tissues by their diffuse reflected spectra. ... -
Discriminating basal cell carcinoma and Bowen's disease from benign skin lesions with a 3D hyperspectral imaging system and convolutional neural networks
Lindholm, Vivian; Annala, Leevi; Koskenmies, Sari; Pitkänen, Sari; Isoherranen, Kirsi; Järvinen, Anna; Jeskanen, Leila; Pölönen, Ilkka; Ranki, Annamari; Raita‐Hakola, Anna‐Maria; Salmivuori, Mari (Wiley-Blackwell, 2024) -
Discriminating Basal Cell Carcinoma and Bowen’s Disease with Novel Hyperspectral Imaging System and Convolutional Neural Networks
Salmivuori, Mari; Lindholm, Vivian; Annala, Leevi; Raita-Hakola, Anna-Maria; Jeskanen, Leila; Pölönen, Ilkka; Koskenmies, Sari; Pitkänen, Sari; Isoherranen, Kirsi; Ranki, Annamari (Society for Publication of Acta Dermato-Venereologica, 2022) -
Assessment of microalgae species, biomass, and distribution from spectral images using a convolution neural network
Salmi, Pauliina; Calderini, Marco; Pääkkönen, Salli; Taipale, Sami; Pölönen, Ilkka (Springer Science and Business Media LLC, 2022)Effective monitoring of microalgae growth is crucial for environmental observation, while the applications of this monitoring could also be expanded to commercial and research-focused microalgae cultivation. Currently, the ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.