Näytä suppeat kuvailutiedot

dc.contributor.authorZhang, Chao‐Ying
dc.contributor.authorLin, Qiu‐Hua
dc.contributor.authorNiu, Yan‐Wei
dc.contributor.authorLi, Wei‐Xing
dc.contributor.authorGong, Xiao‐Feng
dc.contributor.authorCong, Fengyu
dc.contributor.authorWang, Yu‐Ping
dc.contributor.authorCalhoun, Vince D.
dc.date.accessioned2023-09-12T10:21:34Z
dc.date.available2023-09-12T10:21:34Z
dc.date.issued2023
dc.identifier.citationZhang, C., Lin, Q., Niu, Y., Li, W., Gong, X., Cong, F., Wang, Y., & Calhoun, V. D. (2023). Denoising brain networks using a fixed mathematical phase change in independent component analysis of magnitude-only fMRI data. <i>Human Brain Mapping</i>, <i>44</i>(17), 5712-5728. <a href="https://doi.org/10.1002/hbm.26471" target="_blank">https://doi.org/10.1002/hbm.26471</a>
dc.identifier.otherCONVID_184595889
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/89050
dc.description.abstractBrain networks extracted by independent component analysis (ICA) from magnitude-only fMRI data are usually denoised using various amplitude-based thresholds. By contrast, spatial source phase (SSP) or the phase information of ICA brain networks extracted from complex-valued fMRI data, has provided a simple yet effective way to perform the denoising using a fixed phase change. In this work, we extend the approach to magnitude-only fMRI data to avoid testing various amplitude thresholds for denoising magnitude maps extracted by ICA, as most studies do not save the complex-valued data. The main idea is to generate a mathematical SSP map for a magnitude map using a mapping framework, and the mapping framework is built using complex-valued fMRI data with a known SSP map. Here we leverage the fact that the phase map derived from phase fMRI data has similar phase information to the SSP map. After verifying the use of the magnitude data of complex-valued fMRI, this framework is generalized to work with magnitude-only data, allowing use of our approach even without the availability of the corresponding phase fMRI datasets. We test the proposed method using both simulated and experimental fMRI data including complex-valued data from University of New Mexico and magnitude-only data from Human Connectome Project. The results provide evidence that the mathematical SSP denoising with a fixed phase change is effective for denoising spatial maps from magnitude-only fMRI data in terms of retaining more BOLD-related activity and fewer unwanted voxels, compared with amplitude-based thresholding. The proposed method provides a unified and efficient SSP approach to denoise ICA brain networks in fMRI data.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherWiley
dc.relation.ispartofseriesHuman Brain Mapping
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherfMRI
dc.subject.otherindependent component analysis
dc.subject.otherdenoising
dc.subject.othermathematical spatial source phase
dc.subject.othermapping framework
dc.subject.otherfixed phase change
dc.titleDenoising brain networks using a fixed mathematical phase change in independent component analysis of magnitude-only fMRI data
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202309125073
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingfi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineTekniikkafi
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingen
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineEngineeringen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange5712-5728
dc.relation.issn1065-9471
dc.relation.numberinseries17
dc.relation.volume44
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
dc.rights.accesslevelopenAccessfi
dc.subject.ysoriippumattomien komponenttien analyysi
dc.subject.ysotoiminnallinen magneettikuvaus
dc.subject.ysoaivot
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p38529
jyx.subject.urihttp://www.yso.fi/onto/yso/p24211
jyx.subject.urihttp://www.yso.fi/onto/yso/p7040
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.datasethttps://www.humanconnectome.org/
dc.relation.doi10.1002/hbm.26471
jyx.fundinginformationThis work was supported in part by the National Natural Science Foundation of China under Grant 61871067, Grant 61379012, Grant 61671106, Grant 62071082, and Grant 81471742; in part by the National Science Foundation (NSF) under Grant 2112455; in part by the National Institutes of Health (NIH) under Grant R01MH104680, Grant R01MH107354, Grant R01EB005846; in part by the Fundamental Research Funds for the Central Universities, China, under Grant DUT20ZD220; and in part by the Supercomputing Center of Dalian University of Technology.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0