dc.contributor.author | Jauhiainen, Susanne | |
dc.contributor.author | Kauppi, Jukka-Pekka | |
dc.contributor.author | Leppänen, Mari | |
dc.contributor.author | Pasanen, Kati | |
dc.contributor.author | Parkkari, Jari | |
dc.contributor.author | Vasankari, Tommi | |
dc.contributor.author | Kannus, Pekka | |
dc.contributor.author | Äyrämö, Sami | |
dc.date.accessioned | 2023-08-31T09:37:08Z | |
dc.date.available | 2023-08-31T09:37:08Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Jauhiainen, S., Kauppi, J.-P., Leppänen, M., Pasanen, K., Parkkari, J., Vasankari, T., Kannus, P., & Äyrämö, S. (2021). New Machine Learning Approach for Detection of Injury Risk Factors in Young Team Sport Athletes. <i>International Journal of Sports Medicine</i>, <i>42</i>(02), 175-182. <a href="https://doi.org/10.1055/a-1231-5304" target="_blank">https://doi.org/10.1055/a-1231-5304</a> | |
dc.identifier.other | CONVID_42012511 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/88829 | |
dc.description.abstract | The purpose of this article is to present how predictive machine learning methods can be utilized for detecting sport injury risk factors in a data-driven manner. The approach can be used for finding new hypotheses for risk factors and confirming the predictive power of previously recognized ones. We used three-dimensional motion analysis and physical data from 314 young basketball and floorball players (48.4% males, 15.72±1.79 yr, 173.34±9.14 cm, 64.65±10.4 kg). Both linear (L1-regularized logistic regression) and non-linear methods (random forest) were used to predict moderate and severe knee and ankle injuries (N=57) during three-year follow-up. Results were confirmed with permutation tests and predictive risk factors detected with Wilcoxon signed-rank-test (p<0.01). Random forest suggested twelve consistent injury predictors and logistic regression twenty. Ten of these were suggested in both models; sex, body mass index, hamstring flexibility, knee joint laxity, medial knee displacement, height, ankle plantar flexion at initial contact, leg press one-repetition max, and knee valgus at initial contact. Cross-validated areas under receiver operating characteristic curve were 0.65 (logistic regression) and 0.63 (random forest). The results highlight the difficulty of predicting future injuries, but also show that even with models having relatively low predictive power, certain predictive injury risk factors can be consistently detected. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Georg Thieme Verlag KG | |
dc.relation.ispartofseries | International Journal of Sports Medicine | |
dc.rights | In Copyright | |
dc.subject.other | sports medicine | |
dc.subject.other | predictive methods | |
dc.subject.other | machine learning | |
dc.subject.other | knee injuries | |
dc.subject.other | ankle injuries | |
dc.subject.other | basketball and floorball | |
dc.title | New Machine Learning Approach for Detection of Injury Risk Factors in Young Team Sport Athletes | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202308314864 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 175-182 | |
dc.relation.issn | 0172-4622 | |
dc.relation.numberinseries | 02 | |
dc.relation.volume | 42 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2020 Thieme | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 286019 | |
dc.subject.yso | koripallo | |
dc.subject.yso | liikuntalääketiede | |
dc.subject.yso | salibandy | |
dc.subject.yso | loukkaantuminen (fyysinen) | |
dc.subject.yso | nilkat | |
dc.subject.yso | polvet | |
dc.subject.yso | ennusteet | |
dc.subject.yso | junioriurheilu | |
dc.subject.yso | riskitekijät | |
dc.subject.yso | urheiluvammat | |
dc.subject.yso | koneoppiminen | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8781 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13229 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16555 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p336 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p24005 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14204 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3297 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26946 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13277 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12766 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1055/a-1231-5304 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Postdoctoral Researcher, AoF | en |
jyx.fundingprogram | Tutkijatohtori, SA | fi |
jyx.fundinginformation | This study was supported by the Finnish Ministry of Education and Culture, and Competitive State Research Financing of the Expert Responsibility area of Tampere University Hospital (grants 9S047, 9T046, 9U044, 9N053). This work has been carried out in two projects ”Value from health data with cognitive computing” and ”Watson Health Cloud”, funded by Business Finland. Susanne Jauhiainen was funded by the Jenny and Antti Wihuri Foundation (grant 00180121). Jukka-Pekka Kauppi was funded by the Academy of Finland Postdoctoral Researcher program (Research Council for Natural Sciences and Engineering; grant 286019). | |
dc.type.okm | A1 | |