Show simple item record

dc.contributor.authorJauhiainen, Susanne
dc.contributor.authorKauppi, Jukka-Pekka
dc.contributor.authorLeppänen, Mari
dc.contributor.authorPasanen, Kati
dc.contributor.authorParkkari, Jari
dc.contributor.authorVasankari, Tommi
dc.contributor.authorKannus, Pekka
dc.contributor.authorÄyrämö, Sami
dc.date.accessioned2023-08-31T09:37:08Z
dc.date.available2023-08-31T09:37:08Z
dc.date.issued2021
dc.identifier.citationJauhiainen, S., Kauppi, J.-P., Leppänen, M., Pasanen, K., Parkkari, J., Vasankari, T., Kannus, P., & Äyrämö, S. (2021). New Machine Learning Approach for Detection of Injury Risk Factors in Young Team Sport Athletes. <i>International Journal of Sports Medicine</i>, <i>42</i>(02), 175-182. <a href="https://doi.org/10.1055/a-1231-5304" target="_blank">https://doi.org/10.1055/a-1231-5304</a>
dc.identifier.otherCONVID_42012511
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/88829
dc.description.abstractThe purpose of this article is to present how predictive machine learning methods can be utilized for detecting sport injury risk factors in a data-driven manner. The approach can be used for finding new hypotheses for risk factors and confirming the predictive power of previously recognized ones. We used three-dimensional motion analysis and physical data from 314 young basketball and floorball players (48.4% males, 15.72±1.79 yr, 173.34±9.14 cm, 64.65±10.4 kg). Both linear (L1-regularized logistic regression) and non-linear methods (random forest) were used to predict moderate and severe knee and ankle injuries (N=57) during three-year follow-up. Results were confirmed with permutation tests and predictive risk factors detected with Wilcoxon signed-rank-test (p<0.01). Random forest suggested twelve consistent injury predictors and logistic regression twenty. Ten of these were suggested in both models; sex, body mass index, hamstring flexibility, knee joint laxity, medial knee displacement, height, ankle plantar flexion at initial contact, leg press one-repetition max, and knee valgus at initial contact. Cross-validated areas under receiver operating characteristic curve were 0.65 (logistic regression) and 0.63 (random forest). The results highlight the difficulty of predicting future injuries, but also show that even with models having relatively low predictive power, certain predictive injury risk factors can be consistently detected.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherGeorg Thieme Verlag KG
dc.relation.ispartofseriesInternational Journal of Sports Medicine
dc.rightsIn Copyright
dc.subject.othersports medicine
dc.subject.otherpredictive methods
dc.subject.othermachine learning
dc.subject.otherknee injuries
dc.subject.otherankle injuries
dc.subject.otherbasketball and floorball
dc.titleNew Machine Learning Approach for Detection of Injury Risk Factors in Young Team Sport Athletes
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202308314864
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange175-182
dc.relation.issn0172-4622
dc.relation.numberinseries02
dc.relation.volume42
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 Thieme
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber286019
dc.subject.ysokoripallo
dc.subject.ysoliikuntalääketiede
dc.subject.ysosalibandy
dc.subject.ysoloukkaantuminen (fyysinen)
dc.subject.ysonilkat
dc.subject.ysopolvet
dc.subject.ysoennusteet
dc.subject.ysojunioriurheilu
dc.subject.ysoriskitekijät
dc.subject.ysourheiluvammat
dc.subject.ysokoneoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p8781
jyx.subject.urihttp://www.yso.fi/onto/yso/p13229
jyx.subject.urihttp://www.yso.fi/onto/yso/p16555
jyx.subject.urihttp://www.yso.fi/onto/yso/p336
jyx.subject.urihttp://www.yso.fi/onto/yso/p24005
jyx.subject.urihttp://www.yso.fi/onto/yso/p14204
jyx.subject.urihttp://www.yso.fi/onto/yso/p3297
jyx.subject.urihttp://www.yso.fi/onto/yso/p26946
jyx.subject.urihttp://www.yso.fi/onto/yso/p13277
jyx.subject.urihttp://www.yso.fi/onto/yso/p12766
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1055/a-1231-5304
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundinginformationThis study was supported by the Finnish Ministry of Education and Culture, and Competitive State Research Financing of the Expert Responsibility area of Tampere University Hospital (grants 9S047, 9T046, 9U044, 9N053). This work has been carried out in two projects ”Value from health data with cognitive computing” and ”Watson Health Cloud”, funded by Business Finland. Susanne Jauhiainen was funded by the Jenny and Antti Wihuri Foundation (grant 00180121). Jukka-Pekka Kauppi was funded by the Academy of Finland Postdoctoral Researcher program (Research Council for Natural Sciences and Engineering; grant 286019).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright