Satellite-Assisted Multi-Connectivity in Beyond 5G
Majamaa, M., Martikainen, H., Puttonen, J., & Hämäläinen, T. (2023). Satellite-Assisted Multi-Connectivity in Beyond 5G. In WoWMoM 2023 : Proceedings of the 24th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (pp. 413-418). IEEE. https://doi.org/10.1109/wowmom57956.2023.00073
Date
2023Discipline
TietotekniikkaSecure Communications Engineering and Signal ProcessingTekniikkaMathematical Information TechnologySecure Communications Engineering and Signal ProcessingEngineeringCopyright
© 2023 IEEE
Due to the ongoing standardization and deployment activities, satellite networks will be supplementing the 5G and beyond Terrestrial Networks (TNs). For the satellite communications involved to be as efficient as possible, techniques to achieve that should be used. Multi-Connectivity (MC), in which a user can be connected to multiple Next Generation Node Bs simultaneously, is one such technique. However, the technique is not well-researched in the satellite environment. In this paper, an algorithm to activate MC for users in the weakest radio conditions is introduced. The algorithm operates dynamically, considering deactivation of MC to prioritize users in weaker conditions when necessary. The algorithm is evaluated with a packet-level 5G non-terrestrial network system simulator in a scenario that consists of a TN and transparent payload low earth orbit satellite. The algorithm outperforms the benchmark algorithms. The usage of MC with the algorithm increases the mean throughput of the users by 20.3% and the 5th percentile throughput by 83.5% compared to when MC is turned off
...
Publisher
IEEEParent publication ISBN
979-8-3503-3166-0Conference
IEEE International Symposium on a World of Wireless, Mobile and Multimedia NetworksIs part of publication
WoWMoM 2023 : Proceedings of the 24th IEEE International Symposium on a World of Wireless, Mobile and Multimedia NetworksKeywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/182941901
Metadata
Show full item recordCollections
Additional information about funding
This work has been funded by the European Union Horizon 2020 Project DYNASAT (Dynamic Spectrum Sharing and Bandwidth-Efficient Techniques for High-Throughput MIMO Satellite Systems) under Grant Agreement 101004145. The views expressed are those of the authors and do not necessarily represent the project. The Commission is not liable for any use that may be made of any of the information contained therein. ...License
Related items
Showing items with similar title or keywords.
-
Toward Multi-Connectivity in Beyond 5G Non-Terrestrial Networks : Challenges and Possible Solutions
Majamaa, Mikko (Institute of Electrical and Electronics Engineers (IEEE), 2024)Non-terrestrial networks (NTNs) will complement terrestrial networks (TNs) in 5G and beyond, which can be attributed to recent deployment and standardization activities. Maximizing the efficiency of NTN communications is ... -
Multi-Connectivity for User Throughput Enhancement in 5G Non-Terrestrial Networks
Majamaa, Mikko; Martikainen, Henrik; Sormunen, Lauri; Puttonen, Jani (IEEE, 2022)To meet the increasing throughput and reliability demands, satellites may be used to complement the Fifth Gener-ation (5G) Terrestrial Networks (TNs). To increase the efficiency of the satellite communications involved, ... -
Multi-Connectivity in 5G and Beyond Non-Terrestrial Networks
Majamaa, Mikko; Martikainen, Henrik; Sormunen, Lauri; Puttonen, Jani (Croatian Communications and Information Society, 2022)The Fifth Generation (5G) communications systems aim to serve such service classes as Ultra-Reliable Low Latency Communications (URLLC), enhanced Mobile Broadband (eMBB), and massive Machine-Type Communications (mMTC). To ... -
Coordinated Dynamic Spectrum Sharing Between Terrestrial and Non-Terrestrial Networks in 5G and Beyond
Martikainen, Henrik; Majamaa, Mikko; Puttonen, Jani (IEEE, 2023)The emerging Non-Terrestrial Networks (NTNs) can aid to provide 5G and beyond services everywhere and anytime. However, the vast emergence of NTN systems will introduce an unseen interference to both the existing satellite ... -
On Enhancing Reliability in B5G NTNs with Packet Duplication via Multi-Connectivity
Majamaa, Mikko; Martikainen, Henrik; Puttonen, Jani; Hämäläinen, Timo (IEEE, 2023)Non-Terrestrial Networks (NTNs) can be used to provide ubiquitous 5G and beyond services to un(der)served areas. To ensure reliable communication in such networks, packet duplication (PD) through multi-connectivity is a ...