Visualisation for Decision Support in Many-Objective Optimisation : State-of-the-art, Guidance and Future Directions
Hakanen, J., Gold, D., Miettinen, K., & Reed, P. M. (2023). Visualisation for Decision Support in Many-Objective Optimisation : State-of-the-art, Guidance and Future Directions. In D. Brockhoff, M. Emmerich, B. Naujoks, & R. Purshouse (Eds.), Many-Criteria Optimization and Decision Analysis : State-of-the-Art, Present Challenges, and Future Perspective (pp. 181-212). Springer. Natural Computing Series. https://doi.org/10.1007/978-3-031-25263-1_7
Julkaistu sarjassa
Natural Computing SeriesPäivämäärä
2023Oppiaine
TietotekniikkaLaskennallinen tiedeMultiobjective Optimization GroupPäätöksen teko monitavoitteisestiMathematical Information TechnologyComputational ScienceMultiobjective Optimization GroupDecision analytics utilizing causal models and multiobjective optimizationPääsyrajoitukset
Embargo päättyy: 2025-07-29Pyydä artikkeli tutkijalta
Tekijänoikeudet
© 2023 Springer Nature Switzerland AG
This chapter describes the state-of-the-art in visualisation for decision support processes in problems with many objectives. Visualisation is an important part of a constructive decision making process for examining real world many-objective problems. The chapter first illustrates how visualisation can be applied to problem framing, guided optimization, trade-off assessment and solution selection. Next, the chapter reviews state-of-the-art visualisation approaches in terms of what is available and what is typically used. Guidance is provided for choosing and applying visualisation techniques including recommendations from the field of visual analytics. These recommendations are illustrated through a complex real-world decision problem with ten objectives. Lastly, the chapter concludes with suggested future research directions for advancing the scope and impact of many-objective optimisation when confronting complex decision making contexts.
Julkaisija
SpringerEmojulkaisun ISBN
978-3-031-25262-4Kuuluu julkaisuun
Many-Criteria Optimization and Decision Analysis : State-of-the-Art, Present Challenges, and Future PerspectiveISSN Hae Julkaisufoorumista
1619-7127Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/184088613
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Profilointi, SALisätietoja rahoituksesta
This research was supported by the Academy of Finland (grant no 311877) and is related to the thematic research area DEMO (Decision Analytics utilising Causal Models and Multiobjective Optimisation, jyu.fi/demo) of the University of Jyväskylä. Partial funding for this work was provided by the National Science Foundation (NSF), Innovations at the Nexus of Food-Energy-Water Systems, Track 2 (Award 1639268). ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A feature rich distance-based many-objective visualisable test problem generator
Fieldsend, Jonathan; Chugh, Tinkle; Allmendinger, Richard; Miettinen, Kaisa (ACM, 2019)In optimiser analysis and design it is informative to visualise how a search point/population moves through the design space over time. Visualisable distance-based many-objective optimisation problems have been developed ... -
Key Issues in Real-World Applications of Many-Objective Optimisation and Decision Analysis
Deb, Kalyanmoy; Fleming, Peter; Jin, Yaochu; Miettinen, Kaisa; Reed, Patrick M. (Springer, 2023)The insights and benefits to be realised through the optimisation of multiple independent, but conflicting objectives are well recognised by practitioners seeking effective and robust solutions to real-world application ... -
Visualizations for Decision Support in Scenario-based Multiobjective Optimization
Shavazipour, Babooshka; López-Ibáñez, Manuel; Miettinen, Kaisa (Elsevier BV, 2021)We address challenges of decision problems when managers need to optimize several conflicting objectives simultaneously under uncertainty. We propose visualization tools to support the solution of such scenario-based ... -
A Visualizable Test Problem Generator for Many-Objective Optimization
Fieldsend, Jonathan E.; Chugh, Tinkle; Allmendinger, Richard; Miettinen, Kaisa (Institute of Electrical and Electronics Engineers (IEEE), 2022)Visualizing the search behavior of a series of points or populations in their native domain is critical in understanding biases and attractors in an optimization process. Distancebased many-objective optimization test ... -
Many-Objective Quality Measures
Afsar, Bekir; Fieldsend, Jonathan E.; Guerreiro, Andreia P.; Miettinen, Kaisa; Rojas Gonzalez, Sebastian; Sato, Hiroyuki (Springer, 2023)A key concern when undertaking any form of optimisation is how to characterise the quality of the putative solution returned. In many-objective optimisation an added complication is that such measures are on a set of ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.