Näytä suppeat kuvailutiedot

dc.contributor.authorFeng, Yawen
dc.contributor.authorParviainen, Mikko
dc.contributor.authorSarsa, Saara
dc.date.accessioned2023-08-22T07:06:33Z
dc.date.available2023-08-22T07:06:33Z
dc.date.issued2023
dc.identifier.citationFeng, Y., Parviainen, M., & Sarsa, S. (2023). A systematic approach on the second order regularity of solutions to the general parabolic p-Laplace equation. <i>Calculus of Variations and Partial Differential Equations</i>, <i>62</i>, Article 204. <a href="https://doi.org/10.1007/s00526-023-02537-z" target="_blank">https://doi.org/10.1007/s00526-023-02537-z</a>
dc.identifier.otherCONVID_184092021
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/88627
dc.description.abstractWe study a general form of a degenerate or singular parabolic equation ut−|Du|γ(Δu+(p−2)ΔN∞u)=0 that generalizes both the standard parabolic p-Laplace equation and the normalized version that arises from stochastic game theory. We develop a systematic approach to study second order Sobolev regularity and show that D2u exists as a function and belongs to L2loc for a certain range of parameters. In this approach proving the estimate boils down to verifying that a certain coefficient matrix is positive definite. As a corollary we obtain, under suitable assumptions, that a viscosity solution has a Sobolev time derivative belonging to L2loc.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesCalculus of Variations and Partial Differential Equations
dc.rightsCC BY 4.0
dc.subject.othergeneral p-parabolic equations
dc.subject.otherviscosity solutions
dc.subject.otherdivergence structures
dc.subject.otherSobolev regularity
dc.subject.othertime derivative
dc.titleA systematic approach on the second order regularity of solutions to the general parabolic p-Laplace equation
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202308224724
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineAnalyysin ja dynamiikan tutkimuksen huippuyksikköfi
dc.contributor.oppiaineMathematicsen
dc.contributor.oppiaineAnalysis and Dynamics Research (Centre of Excellence)en
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0944-2669
dc.relation.volume62
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2023
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysostokastiset prosessit
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.subject.ysopeliteoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p11400
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
jyx.subject.urihttp://www.yso.fi/onto/yso/p13476
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s00526-023-02537-z
jyx.fundinginformationOpen Access funding provided by University of Jyväskylä (JYU). The first author was supported by China Scholarship Council, no. 202006020186. The third author was supported by the Academy of Finland, Center of Excellence in Randomness and Structures and the Academy of Finland, project 308759.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0