On the second-order regularity of solutions to the parabolic p-Laplace equation
Feng, Y., Parviainen, M., & Sarsa, S. (2022). On the second-order regularity of solutions to the parabolic p-Laplace equation. Journal of Evolution Equations, 22, Article 6. https://doi.org/10.1007/s00028-022-00760-3
Julkaistu sarjassa
Journal of Evolution EquationsPäivämäärä
2022Oppiaine
Analyysin ja dynamiikan tutkimuksen huippuyksikköMatematiikkaAnalysis and Dynamics Research (Centre of Excellence)MathematicsTekijänoikeudet
© 2022 Crown
In this paper, we study the second-order Sobolev regularity of solutions to the parabolic p-Laplace equation. For any p-parabolic function u, we show that D(|Du|p−2+s2Du) exists as a function and belongs to L2loc with s>−1 and 1
<∞. The range of s is sharp.
Julkaisija
BirkhäuserISSN Hae Julkaisufoorumista
1424-3199Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/104469487
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Yawen Feng was supported by China Scholarship Council, No. 202006020186. Saara Sarsa was supported by the Academy of Finland, the Centre of Excellence in Analysis and Dynamics Research and the Academy of Finland, Project 308759.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A systematic approach on the second order regularity of solutions to the general parabolic p-Laplace equation
Feng, Yawen; Parviainen, Mikko; Sarsa, Saara (Springer, 2023)We study a general form of a degenerate or singular parabolic equation ut−|Du|γ(Δu+(p−2)ΔN∞u)=0 that generalizes both the standard parabolic p-Laplace equation and the normalized version that arises from stochastic game ... -
Calderón's problem for p-laplace type equations
Brander, Tommi (University of Jyväskylä, 2016)We investigate a generalization of Calderón’s problem of recovering the conductivity coefficient in a conductivity equation from boundary measurements. As a model equation we consider the p-conductivity equation div σ ... -
Notes on the p-Laplace equation
Lindqvist, Peter (University of Jyväskylä, 2006) -
Notes on the p-Laplace equation
Lindqvist, Peter (University of Jyväskylä, 2017) -
Hölder gradient regularity for the inhomogeneous normalized p(x)-Laplace equation
Siltakoski, Jarkko (Elsevier Inc., 2022)We prove the local gradient Hölder regularity of viscosity solutions to the inhomogeneous normalized p(x)-Laplace equation −Δp(x)Nu=f(x), where p is Lipschitz continuous, infp>1, and f is continuous and bounded.
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.