dc.contributor.author | Xu, Huashuai | |
dc.contributor.author | Hao, Yuxing | |
dc.contributor.author | Zhang, Yunge | |
dc.contributor.author | Zhou, Dongyue | |
dc.contributor.author | Kärkkäinen, Tommi | |
dc.contributor.author | Nickerson, Lisa D. | |
dc.contributor.author | Li, Huanjie | |
dc.contributor.author | Cong, Fengyu | |
dc.date.accessioned | 2023-08-22T06:50:22Z | |
dc.date.available | 2023-08-22T06:50:22Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Xu, H., Hao, Y., Zhang, Y., Zhou, D., Kärkkäinen, T., Nickerson, L. D., Li, H., & Cong, F. (2023). Harmonization of multi-site functional MRI data with dual-projection based ICA model. <i>Frontiers in Neuroscience</i>, <i>17</i>, Article 1225606. <a href="https://doi.org/10.3389/fnins.2023.1225606" target="_blank">https://doi.org/10.3389/fnins.2023.1225606</a> | |
dc.identifier.other | CONVID_184132765 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/88621 | |
dc.description.abstract | Modern neuroimaging studies frequently merge magnetic resonance imaging (MRI) data from multiple sites. A larger and more diverse group of participants can increase the statistical power, enhance the reliability and reproducibility of neuroimaging research, and obtain findings more representative of the general population. However, measurement biases caused by site differences in scanners represent a barrier when pooling data collected from different sites. The existence of site effects can mask biological effects and lead to spurious findings. We recently proposed a powerful denoising strategy that implements dual-projection (DP) theory based on ICA to remove site-related effects from pooled data, demonstrating the method for simulated and in vivo structural MRI data. This study investigates the use of our DP-based ICA denoising method for harmonizing functional MRI (fMRI) data collected from the Autism Brain Imaging Data Exchange II. After frequency-domain and regional homogeneity analyses, two modalities, including amplitude of low frequency fluctuation (ALFF) and regional homogeneity (ReHo), were used to validate our method. The results indicate that DP-based ICA denoising method removes unwanted site effects for both two fMRI modalities, with increases in the significance of the associations between non-imaging variables (age, sex, etc.) and fMRI measures. In conclusion, our DP method can be applied to fMRI data in multi-site studies, enabling more accurate and reliable neuroimaging research findings. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Frontiers Media SA | |
dc.relation.ispartofseries | Frontiers in Neuroscience | |
dc.rights | CC BY 4.0 | |
dc.subject.other | multi-site | |
dc.subject.other | site effects | |
dc.subject.other | functional magnetic resonance imaging | |
dc.subject.other | independent component analysis | |
dc.subject.other | dual-projection | |
dc.title | Harmonization of multi-site functional MRI data with dual-projection based ICA model | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202308224718 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Human and Machine based Intelligence in Learning | fi |
dc.contributor.oppiaine | Tekniikka | fi |
dc.contributor.oppiaine | Secure Communications Engineering and Signal Processing | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.contributor.oppiaine | Human and Machine based Intelligence in Learning | en |
dc.contributor.oppiaine | Engineering | en |
dc.contributor.oppiaine | Secure Communications Engineering and Signal Processing | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 1662-4548 | |
dc.relation.volume | 17 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2023 Xu, Hao, Zhang, Zhou, Kärkkäinen, Nickerson, Li and Cong. | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | toiminnallinen magneettikuvaus | |
dc.subject.yso | riippumattomien komponenttien analyysi | |
dc.subject.yso | kuvantaminen | |
dc.subject.yso | tutkimusmenetelmät | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p24211 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38529 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3532 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p415 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.dataset | http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html | |
dc.relation.doi | 10.3389/fnins.2023.1225606 | |
jyx.fundinginformation | This work was supported by STI 2030–Major Projects 2022ZD0211500, Science and Technology Planning Project of Liaoning Provincial (nos. 2022JH2/10700002 and 2021JH1/10400049), National Natural Science Foundation of China [grant numbers 91748105 and 81471742], National Foundation in China [grant number JCKY 2019110B009], and National Institutes of Health [NIA RF1 AG078304]. | |
dc.type.okm | A1 | |