Näytä suppeat kuvailutiedot

dc.contributor.authorXu, Huashuai
dc.contributor.authorHao, Yuxing
dc.contributor.authorZhang, Yunge
dc.contributor.authorZhou, Dongyue
dc.contributor.authorKärkkäinen, Tommi
dc.contributor.authorNickerson, Lisa D.
dc.contributor.authorLi, Huanjie
dc.contributor.authorCong, Fengyu
dc.date.accessioned2023-08-22T06:50:22Z
dc.date.available2023-08-22T06:50:22Z
dc.date.issued2023
dc.identifier.citationXu, H., Hao, Y., Zhang, Y., Zhou, D., Kärkkäinen, T., Nickerson, L. D., Li, H., & Cong, F. (2023). Harmonization of multi-site functional MRI data with dual-projection based ICA model. <i>Frontiers in Neuroscience</i>, <i>17</i>, Article 1225606. <a href="https://doi.org/10.3389/fnins.2023.1225606" target="_blank">https://doi.org/10.3389/fnins.2023.1225606</a>
dc.identifier.otherCONVID_184132765
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/88621
dc.description.abstractModern neuroimaging studies frequently merge magnetic resonance imaging (MRI) data from multiple sites. A larger and more diverse group of participants can increase the statistical power, enhance the reliability and reproducibility of neuroimaging research, and obtain findings more representative of the general population. However, measurement biases caused by site differences in scanners represent a barrier when pooling data collected from different sites. The existence of site effects can mask biological effects and lead to spurious findings. We recently proposed a powerful denoising strategy that implements dual-projection (DP) theory based on ICA to remove site-related effects from pooled data, demonstrating the method for simulated and in vivo structural MRI data. This study investigates the use of our DP-based ICA denoising method for harmonizing functional MRI (fMRI) data collected from the Autism Brain Imaging Data Exchange II. After frequency-domain and regional homogeneity analyses, two modalities, including amplitude of low frequency fluctuation (ALFF) and regional homogeneity (ReHo), were used to validate our method. The results indicate that DP-based ICA denoising method removes unwanted site effects for both two fMRI modalities, with increases in the significance of the associations between non-imaging variables (age, sex, etc.) and fMRI measures. In conclusion, our DP method can be applied to fMRI data in multi-site studies, enabling more accurate and reliable neuroimaging research findings.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherFrontiers Media SA
dc.relation.ispartofseriesFrontiers in Neuroscience
dc.rightsCC BY 4.0
dc.subject.othermulti-site
dc.subject.othersite effects
dc.subject.otherfunctional magnetic resonance imaging
dc.subject.otherindependent component analysis
dc.subject.otherdual-projection
dc.titleHarmonization of multi-site functional MRI data with dual-projection based ICA model
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202308224718
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineHuman and Machine based Intelligence in Learningfi
dc.contributor.oppiaineTekniikkafi
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingfi
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineHuman and Machine based Intelligence in Learningen
dc.contributor.oppiaineEngineeringen
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1662-4548
dc.relation.volume17
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 Xu, Hao, Zhang, Zhou, Kärkkäinen, Nickerson, Li and Cong.
dc.rights.accesslevelopenAccessfi
dc.subject.ysotoiminnallinen magneettikuvaus
dc.subject.ysoriippumattomien komponenttien analyysi
dc.subject.ysokuvantaminen
dc.subject.ysotutkimusmenetelmät
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p24211
jyx.subject.urihttp://www.yso.fi/onto/yso/p38529
jyx.subject.urihttp://www.yso.fi/onto/yso/p3532
jyx.subject.urihttp://www.yso.fi/onto/yso/p415
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.datasethttp://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html
dc.relation.doi10.3389/fnins.2023.1225606
jyx.fundinginformationThis work was supported by STI 2030–Major Projects 2022ZD0211500, Science and Technology Planning Project of Liaoning Provincial (nos. 2022JH2/10700002 and 2021JH1/10400049), National Natural Science Foundation of China [grant numbers 91748105 and 81471742], National Foundation in China [grant number JCKY 2019110B009], and National Institutes of Health [NIA RF1 AG078304].
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0