Näytä suppeat kuvailutiedot

dc.contributor.authorKärkkäinen, Tommi
dc.contributor.authorHänninen, Jan
dc.date.accessioned2023-08-15T11:28:25Z
dc.date.available2023-08-15T11:28:25Z
dc.date.issued2023
dc.identifier.citationKärkkäinen, T., & Hänninen, J. (2023). Additive autoencoder for dimension estimation. <i>Neurocomputing</i>, <i>551</i>, Article 126520. <a href="https://doi.org/10.1016/j.neucom.2023.126520" target="_blank">https://doi.org/10.1016/j.neucom.2023.126520</a>
dc.identifier.otherCONVID_184009723
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/88540
dc.description.abstractDimension reduction is one of the key data transformation techniques in machine learning and knowledge discovery. It can be realized by using linear and nonlinear transformation techniques. An additive autoencoder for dimension reduction, which is composed of a serially performed bias estimation, linear trend estimation, and nonlinear residual estimation, is proposed and analyzed. Compared to the classical model, adding an explicit linear operator to the overall transformation and considering the nonlinear residual estimation in the original data dimension significantly improves the data reproduction capabilities of the proposed model. The computational experiments confirm that an autoencoder of this form, with only a shallow network to encapsulate the nonlinear behavior, is able to identify an intrinsic dimension of a dataset with low autoencoding error. This observation leads to an investigation in which shallow and deep network structures, and how they are trained, are compared. We conclude that the deeper network structures obtain lower autoencoding errors during the identification of the intrinsic dimension. However, the detected dimension does not change compared to a shallow network. As far as we know, this is the first experimental result concluding no benefit from a deep architecture compared to its shallow counterpart.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.ispartofseriesNeurocomputing
dc.rightsCC BY 4.0
dc.subject.otherautoencoder
dc.subject.otherdimension reduction
dc.subject.otherintrinsic dimension
dc.subject.otherdeep learning
dc.titleAdditive autoencoder for dimension estimation
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202308154650
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTekniikkafi
dc.contributor.oppiaineHuman and Machine based Intelligence in Learningfi
dc.contributor.oppiaineKoulutusteknologia ja kognitiotiedefi
dc.contributor.oppiaineEngineeringen
dc.contributor.oppiaineHuman and Machine based Intelligence in Learningen
dc.contributor.oppiaineLearning and Cognitive Sciencesen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0925-2312
dc.relation.volume551
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 The Author(s). Published by Elsevier B.V.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber351579
dc.subject.ysodata
dc.subject.ysokoneoppiminen
dc.subject.ysomallintaminen
dc.subject.ysosyväoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p27250
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p3533
jyx.subject.urihttp://www.yso.fi/onto/yso/p39324
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.neucom.2023.126520
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramOthers, AoFen
jyx.fundingprogramMuut, SAfi
jyx.fundinginformationThis work was supported by the Academy of Finland from the project 351579 (MLNovCat).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0