Näytä suppeat kuvailutiedot

dc.contributor.authorSalminen, Joni
dc.contributor.authorMustak, Mekhail
dc.contributor.authorSufyan, Muhammad
dc.contributor.authorJansen, Bernard J.
dc.date.accessioned2023-07-14T06:55:24Z
dc.date.available2023-07-14T06:55:24Z
dc.date.issued2023
dc.identifier.citationSalminen, J., Mustak, M., Sufyan, M., & Jansen, B. J. (2023). How can algorithms help in segmenting users and customers? : A systematic review and research agenda for algorithmic customer segmentation. <i>Journal of Marketing Analytics</i>, <i>11</i>(4), 677-692. <a href="https://doi.org/10.1057/s41270-023-00235-5" target="_blank">https://doi.org/10.1057/s41270-023-00235-5</a>
dc.identifier.otherCONVID_183980076
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/88403
dc.description.abstractWhat algorithm to choose for customer segmentation? Should you use one algorithm or many? How many customer segments should you create? How to evaluate the results? In this research, we carry out a systematic literature review to address such central questions in customer segmentation research and practice. The results from extracting information from 172 relevant articles show that algorithmic customer segmentation is the predominant approach for customer segmentation. We found researchers employing 46 different algorithms and 14 different evaluation metrics. For the algorithms, K-means clustering is the most employed. For the metrics, separation-focused metrics are slightly more prevalent than statistics-focused metrics. However, extant studies rarely use domain experts in evaluating the outcomes. Out of the 169 studies that provided details about hyperparameters, more than four out of five used segment size as their only hyperparameter. Typically, studies generate four segments, although the maximum number rarely exceeds twenty, and in most cases, is less than ten. Based on these findings, we propose seven key goals and three practical implications to enhance customer segmentation research and application.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherPalgrave Macmillan
dc.relation.ispartofseriesJournal of Marketing Analytics
dc.rightsCC BY 4.0
dc.subject.othercustomer segmentation
dc.subject.othermachine learning
dc.subject.otherAI
dc.subject.otheralgorithms
dc.titleHow can algorithms help in segmenting users and customers? : A systematic review and research agenda for algorithmic customer segmentation
dc.typereview article
dc.identifier.urnURN:NBN:fi:jyu-202307144526
dc.contributor.laitosKauppakorkeakoulufi
dc.contributor.laitosSchool of Business and Economicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bc
dc.description.reviewstatuspeerReviewed
dc.format.pagerange677-692
dc.relation.issn2050-3318
dc.relation.numberinseries4
dc.relation.volume11
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2023
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysosystemaattiset kirjallisuuskatsaukset
dc.subject.ysoalgoritmit
dc.subject.ysokoneoppiminen
dc.subject.ysoasiakassegmentointi
dc.subject.ysotekoäly
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p29683
jyx.subject.urihttp://www.yso.fi/onto/yso/p14524
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p25658
jyx.subject.urihttp://www.yso.fi/onto/yso/p2616
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1057/s41270-023-00235-5
jyx.fundinginformationOpen Access funding provided by University of Vaasa (UVA). Funding was provided by Liikesivistysrahasto.
dc.type.okmA2


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0