dc.contributor.author | López-Estrada, Omar | |
dc.contributor.author | Mammen, Nisha | |
dc.contributor.author | Laverdure, Laura | |
dc.contributor.author | Melander, Marko M. | |
dc.contributor.author | Häkkinen, Hannu | |
dc.contributor.author | Honkala, Karoliina | |
dc.date.accessioned | 2023-07-11T10:07:38Z | |
dc.date.available | 2023-07-11T10:07:38Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | López-Estrada, O., Mammen, N., Laverdure, L., Melander, M. M., Häkkinen, H., & Honkala, K. (2023). Computational Criteria for Hydrogen Evolution Activity on Ligand-Protected Au25-Based Nanoclusters. <i>ACS Catalysis</i>, <i>13</i>(13), 8997-9006. <a href="https://doi.org/10.1021/acscatal.3c01065" target="_blank">https://doi.org/10.1021/acscatal.3c01065</a> | |
dc.identifier.other | CONVID_183935381 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/88368 | |
dc.description.abstract | The hydrogen evolution reaction (HER) is a critical reaction in addressing climate change; however, it requires catalysts to be generated on an industrial scale. Nanomaterials offer several advantages over conventional HER catalysts, including the possibility of atomic precision in tailoring the intrinsic activity. Ligand-protected metal clusters, such as the thiolate-protected MAu24(SR)18 (where M is Au, Cu, Pd), are of particular interest as not only are they electrocatalytically active toward HER, but the charge state and composition can be precisely tuned. Here, we present a comprehensive computational study examining how the charge state and dopants affect the catalytic activity of [MAu24(SCH3)18]q toward the Volmer step of the HER. Assuming an adsorbed hydrogen atom to be the key intermediate, then, according to the Sabatier principle, the H adsorption energy should be nearly thermoneutral for an ideal HER catalyst. Our results show that adsorption energies alone are an insufficient criterion to identify a promising catalytic material; experimentally relevant redox potentials, the corresponding catalyst’s charge states, and the kinetic barriers should also be considered. Notably, this work explains the relative activity of MAu24(SR)18 (M = Au, Cu, Pd) clusters reported by Kumar et al. (Nanoscale 2020, 12, 9969). Our results validate a more thorough computational approach that includes charge and redox potential to understand and screen electrocatalytically active nanoclusters. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | American Chemical Society (ACS) | |
dc.relation.ispartofseries | ACS Catalysis | |
dc.rights | CC BY 4.0 | |
dc.subject.other | tiheysfunktionaaliteoria | |
dc.subject.other | electrocatalysis | |
dc.subject.other | HER | |
dc.subject.other | gold nanocluster | |
dc.subject.other | ligand protected cluster | |
dc.subject.other | doping | |
dc.subject.other | redox potential | |
dc.subject.other | density functional theory | |
dc.title | Computational Criteria for Hydrogen Evolution Activity on Ligand-Protected Au25-Based Nanoclusters | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202307114495 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Kemian laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.contributor.laitos | Department of Chemistry | en |
dc.contributor.oppiaine | Nanoscience Center | fi |
dc.contributor.oppiaine | Resurssiviisausyhteisö | fi |
dc.contributor.oppiaine | Fysikaalinen kemia | fi |
dc.contributor.oppiaine | Nanoscience Center | en |
dc.contributor.oppiaine | School of Resource Wisdom | en |
dc.contributor.oppiaine | Physical Chemistry | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 8997-9006 | |
dc.relation.issn | 2155-5435 | |
dc.relation.numberinseries | 13 | |
dc.relation.volume | 13 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2023 The Authors. Published by American Chemical Society | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 317739 | |
dc.relation.grantnumber | 351582 | |
dc.relation.grantnumber | 351583 | |
dc.relation.grantnumber | 332290 | |
dc.relation.grantnumber | 338228 | |
dc.subject.yso | elektrokatalyysi | |
dc.subject.yso | nanorakenteet | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38660 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p25315 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1021/acscatal.3c01065 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Others, AoF | en |
jyx.fundingprogram | Others, AoF | en |
jyx.fundingprogram | Postdoctoral Researcher, AoF | en |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | Muut, SA | fi |
jyx.fundingprogram | Muut, SA | fi |
jyx.fundingprogram | Tutkijatohtori, SA | fi |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundinginformation | This work was supported by the Academy of Finland (Grant Nos. 351582, 317739, 351583, 332290, 338228). Computational resources were provided by the CSC-IT Center for Science, Espoo, Finland. | |
dc.type.okm | A1 | |