Show simple item record

dc.contributor.authorLópez-Estrada, Omar
dc.contributor.authorMammen, Nisha
dc.contributor.authorLaverdure, Laura
dc.contributor.authorMelander, Marko M.
dc.contributor.authorHäkkinen, Hannu
dc.contributor.authorHonkala, Karoliina
dc.date.accessioned2023-07-11T10:07:38Z
dc.date.available2023-07-11T10:07:38Z
dc.date.issued2023
dc.identifier.citationLópez-Estrada, O., Mammen, N., Laverdure, L., Melander, M. M., Häkkinen, H., & Honkala, K. (2023). Computational Criteria for Hydrogen Evolution Activity on Ligand-Protected Au25-Based Nanoclusters. <i>ACS Catalysis</i>, <i>13</i>(13), 8997-9006. <a href="https://doi.org/10.1021/acscatal.3c01065" target="_blank">https://doi.org/10.1021/acscatal.3c01065</a>
dc.identifier.otherCONVID_183935381
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/88368
dc.description.abstractThe hydrogen evolution reaction (HER) is a critical reaction in addressing climate change; however, it requires catalysts to be generated on an industrial scale. Nanomaterials offer several advantages over conventional HER catalysts, including the possibility of atomic precision in tailoring the intrinsic activity. Ligand-protected metal clusters, such as the thiolate-protected MAu24(SR)18 (where M is Au, Cu, Pd), are of particular interest as not only are they electrocatalytically active toward HER, but the charge state and composition can be precisely tuned. Here, we present a comprehensive computational study examining how the charge state and dopants affect the catalytic activity of [MAu24(SCH3)18]q toward the Volmer step of the HER. Assuming an adsorbed hydrogen atom to be the key intermediate, then, according to the Sabatier principle, the H adsorption energy should be nearly thermoneutral for an ideal HER catalyst. Our results show that adsorption energies alone are an insufficient criterion to identify a promising catalytic material; experimentally relevant redox potentials, the corresponding catalyst’s charge states, and the kinetic barriers should also be considered. Notably, this work explains the relative activity of MAu24(SR)18 (M = Au, Cu, Pd) clusters reported by Kumar et al. (Nanoscale 2020, 12, 9969). Our results validate a more thorough computational approach that includes charge and redox potential to understand and screen electrocatalytically active nanoclusters.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society (ACS)
dc.relation.ispartofseriesACS Catalysis
dc.rightsCC BY 4.0
dc.subject.othertiheysfunktionaaliteoria
dc.subject.otherelectrocatalysis
dc.subject.otherHER
dc.subject.othergold nanocluster
dc.subject.otherligand protected cluster
dc.subject.otherdoping
dc.subject.otherredox potential
dc.subject.otherdensity functional theory
dc.titleComputational Criteria for Hydrogen Evolution Activity on Ligand-Protected Au25-Based Nanoclusters
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202307114495
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineResurssiviisausyhteisöfi
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineNanoscience Centeren
dc.contributor.oppiaineSchool of Resource Wisdomen
dc.contributor.oppiainePhysical Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange8997-9006
dc.relation.issn2155-5435
dc.relation.numberinseries13
dc.relation.volume13
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 The Authors. Published by American Chemical Society
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber317739
dc.relation.grantnumber351582
dc.relation.grantnumber351583
dc.relation.grantnumber332290
dc.relation.grantnumber338228
dc.subject.ysoelektrokatalyysi
dc.subject.ysonanorakenteet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p38660
jyx.subject.urihttp://www.yso.fi/onto/yso/p25315
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1021/acscatal.3c01065
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramOthers, AoFen
jyx.fundingprogramOthers, AoFen
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramMuut, SAfi
jyx.fundingprogramMuut, SAfi
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundinginformationThis work was supported by the Academy of Finland (Grant Nos. 351582, 317739, 351583, 332290, 338228). Computational resources were provided by the CSC-IT Center for Science, Espoo, Finland.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0