Näytä suppeat kuvailutiedot

dc.contributor.authorAbidi, Kameyab Raza
dc.contributor.authorKoskinen, Pekka
dc.date.accessioned2023-06-21T08:34:05Z
dc.date.available2023-06-21T08:34:05Z
dc.date.issued2023
dc.identifier.citationAbidi, K. R., & Koskinen, P. (2023). Electronic structure and elasticity of two-dimensional metals of group 10 : A DFT study. In <i>E-QMAT 2022 : Emergent Phenomena in Quantum Materials</i> (2518, Article 012006). IOP Publishing. Journal of Physics : Conference Series, 2518. <a href="https://doi.org/10.1088/1742-6596/2518/1/012006" target="_blank">https://doi.org/10.1088/1742-6596/2518/1/012006</a>
dc.identifier.otherCONVID_183644708
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/87988
dc.description.abstractThe discovery of two-dimensional (2D) iron monolayer in graphene pores stimulated experimental and computational material scientists to investigate low-dimensional elemental metals. There have been many advances in their synthesis, stability, and properties in the last few years. Inspired by these advancements, we investigated the electronic structure and elasticity of free-standing monolayers of group 10 elemental metals, viz. Ni, Pd, and Pt. Using density-functional theory (DFT), we explored the energetic, geometric, electronic, and elastic properties of hexagonal, honeycomb, and square lattice structures of each element, in both planar and buckled forms. Among planar configurations, the order of increasing stability is honeycomb, square, and hexagonal. In buckled form, this ordering remains the same for Pt but is reversed for Ni and Pd. Upon geometrical optimization, the extent of buckling for Pt was found to be small compared to Ni and Pd. The effect of buckling on the electronic structure was further scrutinized through the projected density of states, and it was found that highly buckled configurations derive their of states from 3D bulk, which highlights the correlation between buckled configurations and 3D bulk. For Pt in buckled square and honeycomb lattices, the density of states correlates more closely to their 2D monolayers. Regarding elasticity, the in-plane elastic constants indicate that all planar and buckled square lattices are unstable.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIOP Publishing
dc.relation.ispartofE-QMAT 2022 : Emergent Phenomena in Quantum Materials
dc.relation.ispartofseriesJournal of Physics : Conference Series
dc.rightsCC BY 3.0
dc.titleElectronic structure and elasticity of two-dimensional metals of group 10 : A DFT study
dc.typeconferenceObject
dc.identifier.urnURN:NBN:fi:jyu-202306214038
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineKiihdytinfysiikka ja subatomäärinen fysiikkafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineOpettajien koulutuksen tutkimus (opetus, oppiminen, opettajuus, oppimispolut, koulutus)fi
dc.contributor.oppiaineFysiikkafi
dc.contributor.oppiaineAccelerator and Subatomic Physicsen
dc.contributor.oppiaineNanoscience Centeren
dc.contributor.oppiaineTeacher education research (teaching, learning, teacher, learning paths, education)en
dc.contributor.oppiainePhysicsen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.relation.issn1742-6588
dc.relation.volume2518
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 IOP Publishing
dc.rights.accesslevelopenAccessfi
dc.relation.conferenceEmergent Phenomena in Quantum Materials (E-QMAT)
dc.subject.ysotiheysfunktionaaliteoria
dc.subject.ysometallit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p28852
jyx.subject.urihttp://www.yso.fi/onto/yso/p3097
dc.rights.urlhttps://creativecommons.org/licenses/by/3.0/
dc.relation.doi10.1088/1742-6596/2518/1/012006
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 3.0
Ellei muuten mainita, aineiston lisenssi on CC BY 3.0