Näytä suppeat kuvailutiedot

dc.contributor.authorMazumdar, Atanu
dc.contributor.authorLópez-Ibáñez, Manuel
dc.contributor.authorChugh, Tinkle
dc.contributor.authorHakanen, Jussi
dc.contributor.authorMiettinen, Kaisa
dc.date.accessioned2023-06-13T04:41:20Z
dc.date.available2023-06-13T04:41:20Z
dc.date.issued2023
dc.identifier.citationMazumdar, A., López-Ibáñez, M., Chugh, T., Hakanen, J., & Miettinen, K. (2023). Treed Gaussian Process Regression for Solving Offline Data-Driven Continuous Multiobjective Optimization Problems. <i>Evolutionary Computation</i>, <i>31</i>(4), 375-399. <a href="https://doi.org/10.1162/evco_a_00329" target="_blank">https://doi.org/10.1162/evco_a_00329</a>
dc.identifier.otherCONVID_183034198
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/87648
dc.description.abstractFor offline data-driven multiobjective optimization problems (MOPs), no new data is available during the optimization process. Approximation models (or surrogates) are first built using the provided offline data and an optimizer, e.g. a multiobjective evolutionary algorithm, can then be utilized to find Pareto optimal solutions to the problem with surrogates as objective functions. In contrast to online data-driven MOPs, these surrogates cannot be updated with new data and, hence, the approximation accuracy cannot be improved by considering new data during the optimization process. Gaussian process regression (GPR) models are widely used as surrogates because of their ability to provide uncertainty information. However, building GPRs becomes computationally expensive when the size of the dataset is large. Using sparse GPRs reduces the computational cost of building the surrogates. However, sparse GPRs are not tailored to solve offline data-driven MOPs, where good accuracy of the surrogates is needed near Pareto optimal solutions. Treed GPR (TGPR-MO) surrogates for offline data-driven MOPs with continuous decision variables are proposed in this paper. The proposed surrogates first split the decision space into subregions using regression trees and build GPRs sequentially in regions close to Pareto optimal solutions in the decision space to accurately approximate tradeoffs between the objective functions. TGPR-MO surrogates are computationally inexpensive because GPRs are built only in a smaller region of the decision space utilizing a subset of the data. The TGPR-MO surrogates were tested on distance-based visualizable problems with various data sizes, sampling strategies, numbers of objective functions, and decision variables. Experimental results showed that the TGPR-MO surrogates are computationally cheaper and can handle datasets of large size. Furthermore, TGPR-MO surrogates produced solutions closer to Pareto optimal solutions compared to full GPRs and sparse GPRs.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMIT Press
dc.relation.ispartofseriesEvolutionary Computation
dc.rightsCC BY 4.0
dc.subject.otherGaussian processes
dc.subject.otherkriging
dc.subject.otherregression trees
dc.subject.othermetamodelling
dc.subject.othersurrogate
dc.subject.otherPareto optimality
dc.titleTreed Gaussian Process Regression for Solving Offline Data-Driven Continuous Multiobjective Optimization Problems
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202306133715
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineHyvinvoinnin tutkimuksen yhteisöfi
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineMultiobjective Optimization Groupfi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiainePäätöksen teko monitavoitteisestifi
dc.contributor.oppiaineSchool of Wellbeingen
dc.contributor.oppiaineComputational Scienceen
dc.contributor.oppiaineMultiobjective Optimization Groupen
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineDecision analytics utilizing causal models and multiobjective optimizationen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange375-399
dc.relation.issn1063-6560
dc.relation.numberinseries4
dc.relation.volume31
dc.type.versionacceptedVersion
dc.rights.copyright© MIT Press 2023
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysopareto-tehokkuus
dc.subject.ysomonitavoiteoptimointi
dc.subject.ysokriging-menetelmä
dc.subject.ysogaussiset prosessit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p28039
jyx.subject.urihttp://www.yso.fi/onto/yso/p32016
jyx.subject.urihttp://www.yso.fi/onto/yso/p3126
jyx.subject.urihttp://www.yso.fi/onto/yso/p38750
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1162/evco_a_00329
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0