On the Modulus Duality in Arbitrary Codimension
Lohvansuu, A. (2022). On the Modulus Duality in Arbitrary Codimension. International Mathematics Research Notices, Advance article. https://doi.org/10.1093/imrn/rnac238
Julkaistu sarjassa
International Mathematics Research NoticesTekijät
Päivämäärä
2022Tekijänoikeudet
© The Author(s) 2022. Published by Oxford University Press
We study the modulus of dual families of k- and (n−k)-dimensional Lipschitz chains of Euclidean n-cubes and establish half of the modulus duality identity.
Julkaisija
Oxford University Press (OUP)ISSN Hae Julkaisufoorumista
1073-7928Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/159360615
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
This work was supported by the Academy of Finland [308659].Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Duality of moduli in regular toroidal metric spaces
Lohvansuu, Atte (Finnish Mathematical Society, 2021)We generalize a result of Freedman and He [4, Theorem 2.5], concerning the duality of moduli and capacities in solid tori, to sufficiently regular metric spaces. This is a continuation of the work of the author and Rajala ... -
Uniformization with Infinitesimally Metric Measures
Rajala, Kai; Rasimus, Martti; Romney, Matthew (Springer, 2021)We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces X homeomorphic to R2R2. Given a measure μμ on such a space, we introduce μμ-quasiconformal maps f:X→R2f:X→R2, ... -
Regularity and modulus of continuity of space-filling curves
Kauranen, Aapo; Koskela, Pekka; Zapadinskaya, Aleksandra (Magnes Press, 2019)We study critical regularity assumptions on space-filling curves that possess certain modulus of continuity. The bounds we obtain are essentially sharp, as demonstrated by an example. -
Curve packing and modulus estimates
Fässler, Katrin; Orponen, Tuomas (American Mathematical Society, 2018)A family of planar curves is called a Moser family if it contains an isometric copy of every rectifiable curve in R 2 of length one. The classical "worm problem" of L. Moser from 1966 asks for the least area covered ... -
Existence for shape optimization problems in arbitrary dimension
Liu, Wenbin; Neittaanmäki, Pekka; Tiba, Dan (Society for Industrial and Applied Mathematics, 2003)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.