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We study the modulus of dual families of k- and (n−k)-dimensional Lipschitz chains of

Euclidean n-cubes and establish half of the modulus duality identity.

1 Introduction

Suppose D ⊂ R
2 is a Jordan domain, whose boundary is divided into four segments

ζ1, . . . , ζ4, in cyclic order. Let �(ζ1, ζ3; D) be the family of all paths of D that connect ζ1

and ζ3. Then for every 1 < p < ∞

(modp�(ζ1, ζ3; D))1/p(modq�(ζ2, ζ4; D))1/q = 1. (1)

Here q = p
p−1 and the p-modulus of a path family � is defined by

modp� = inf
ρ

∫
D

ρp dH2,

where the infimum is taken over all positive Borel-functions ρ with

∫
γ

ρ ds ≥ 1
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2 A. Lohvansuu

for every locally rectifiable path γ ∈ �. The path modulus is a fundamental tool in

geometric function theory and nonsmooth analysis [10, 18, 22]. To prevent confusion,

we use the plural form of the word modulus, moduli, sparingly. We emphasize that the

concepts and results of this paper are not closely related to moduli spaces.

For conformal moduli, that is, p = 2 = q, the duality relation (1) was already

known to Beurling and Ahlfors, see for example, [1, Lemma 4] and [2, Ch. 14], although

instead of modulus they considered its reciprocal, called extremal length. For general p

the identity (1) follows from the results of [24]. It has found applications in connection

with uniformization theorems [12, 17] and Sobolev extension domains [23].

The duality property of the modulus is also present in Euclidean spaces of

higher dimension [6, 8, 24] and sufficiently regular metric spaces [13–15]. Moreover,

discrete analogues can be found in the context of graphs and networks, see [3] and the

references therein. For example, in [24], it is shown that for 1 < p < ∞

(modp�(E, F; G))1/p(modq�∗(E, F; G))1/q = 1, (2)

where G ⊂ R
n is open and connected, E and F are disjoint, compact and connected

subsets of G and �∗(E, F; G) is the set of all relatively closed sets of G that separate E

from F. The modulus of separating sets is a natural generalization of the path modulus.

See Section 2 for definitions of moduli and other concepts appearing in the introduction.

Separating sets are generally of codimension 1, so (1) and (2) deal with objects

of either dimension or codimension 1. In fact, this is a common theme in all of the

results cited above. Indeed, not much is known about the relationship of the modulus

and objects of higher (co)dimension. However, the modulus has been applied to study

such objects in [11, 16], where the nonexistence of quasisymmetric parametrizations of

certain spaces was established. Studying more general moduli could therefore lead to

finding tools to approach such parametrization questions in higher dimensions.

An observation by Freedman and He (see the discussion after Theorem 2.5 in [6])

hints that a duality result could hold for objects of higher (co)dimension as well. In this

paper we explore this question in the setting of cubes of Rn.

Our first problem is defining suitable classes of k- and (n − k)-dimensional

objects, since simple descriptions such as “connecting paths” or “separating surfaces”

do not seem to exist. We follow [6] and define the objects as representatives of certain

relative homology classes. For example, in the context of (1), we can think of the paths

of �(ζ1, ζ3; D) as singular relative cycles, which are representatives of either generator

of H1(D, ζ1 ∪ ζ3) � Z. Since we also want to integrate over the chains, we need to assume
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some regularity. For this reason we will consider Lipschitz chains instead of singular

chains.

Let Q ⊂ R
n be a compact set homeomorphic to the closed unit n-cube In. Fix a

homeomorphism h : Q → In and an integer 0 < k < n, and let

A = h−1(∂Ik × In−k) and B = h−1(Ik × ∂In−k).

Then A and B are (n − 1)-dimensional submanifolds of ∂Q with ∂Q = A ∪ B and

∂A = A∩B = ∂B. We assume that A, B, and Q are locally Lipschitz neighborhood retracts.

This includes triples (Q, A, B) that are smooth or polygonal and cubes that are images of

the standard cube under bi-Lipschitz automorphisms of Rn.

We denote the Lipschitz homology groups by HL∗ . We consider only groups with

integer coefficients. This notation should not be confused with the Hausdorff measures,

which are denoted by H∗. Note that

HL
k (Q, A) � Z � HL

n−k(Q, B),

since the same is true for singular homology, and the two homology theories are

equivalent for pairs of locally Lipschitz retracts (see Lemma 2.1).

Let �A (resp. �B) be the collection of the images of relative Lipschitz k-cycles of

Q − B that generate HL
k (Q, A) ((n − k)-cycles of Q − A that generate HL

n−k(Q, B)). Define

modp�A := inf
ρ

∫
Q

ρp dHn,

where the infimum is taken over positive Borel-functions ρ, for which

∫
S
ρ dHk ≥ 1

for every S ∈ �A. The modulus modp�B is defined analogously. In this paper we will

prove the following upper bound.

Theorem 1.1. For every 1 < p < ∞

(modp�A)1/p(modq�B)1/q ≤ 1,

where q = p
p−1 .
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It is unknown whether Theorem 1.1 holds with an equality. We will prove

Theorem 1.1 in Section 3. A similar result for de Rham cohomology classes, with

an equality, is proved in the setting of Riemannian manifolds in pages 212–213

of [6].

In light of the results of [5, Ch. 4], it would be interesting to know whether

analogues of Theorem 1.1 hold for homology classes of integral currents.

Remark 1.2. The assumption on Q, A, and B being locally Lipschitz neighborhood

retracts can be relaxed. The proof of Theorem 1.1 only requires that there exists a

pair of Lipschitz chains that generate Hk(Q, A) and Hn−k(Q, B). The assumption on

retracts was chosen for its simplicity and its use in [5]. It is also likely that such

minimal assumptions for the upper bound of Theorem 1.1 are not sufficient for the

corresponding lower bound. We will discuss the lower bound in Section 4.

2 Definitions

2.1 Lipschitz homology

Let us recall the definition and basic properties of the integral homology groups. See

for example [4, 9] or other texts on basic algebraic topology for a more comprehensive

treatment.

For an integer k ≥ 0 the standard k-simplex �k is the convex hull of the standard

unit vectors e0, . . . , ek of R
k+1. Given a metric space (X, d), a singular k-simplex is a

continuous map from �k to X. Finite formal linear combinations

σ =
∑

i

kiσi

of singular k-simplices σi with integer coefficients ki are called singular k-chains.

Singular k-chains of X form a free abelian group denoted by Ck(X). The boundary ∂σ

of a singular k-simplex σ is the singular (k − 1)-chain

∂σ =
k∑

i=0

(−1)iσ ◦ Fi
k,

where Fi
k : �k−1 → �k is the unique linear map that maps each ej to ej for j < i and to

ej+1 for j ≥ i. For singular 0-simplices we set ∂σ = 0. The boundary defines a collection

of homomorphisms ∂ : Ck(X) → Ck−1(X), all denoted by the same symbol ∂. Then ∂∂ = 0.

The image of a singular k-simplex σ is the compact set |σ | = σ(�k). The image

of a k-chain σ = ∑
i kiσi is the compact set |σ | = ⋃

i |σi|.
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Given a subspace Y ⊂ X, we identify each singular simplex σ of Y with the

singular simplex iY ◦ σ of X, where iY : Y ↪→ X is the inclusion map. We define the

groups of relative chains by

Ck(X, Y) := Ck(X)

Ck(Y)
,

with the convention Ck(X, ∅) = Ck(X). The boundary map induces homomorphisms

∂ : Ck(X, Y) → Ck−1(X, Y), which are again denoted by the same symbol. A chain

σ ∈ Ck(X) is called a cycle relative to Y, if ∂σ ∈ Ck−1(Y), or simply a relative cycle if

the choice of Y is clear from the context. Similarly, σ is called a relative boundary if

σ = ∂σ ′ + σ ′′, where σ ′ ∈ Ck+1(X) and σ ′′ ∈ Ck(Y).

The singular relative homology groups of the pair (X, Y) are the quotient groups

Hk(X, Y) := ker(∂ : Ck(X, Y) → Ck−1(X, Y))

im(∂ : Ck+1(X, Y) → Ck(X, Y))
.

The homology groups of X are the groups Hk(X) := Hk(X, ∅). The homology class of a

(relative) chain σ is denoted by [σ ]. The homology classes of Hk(X, Y) are represented

by relative k-cycles, and two relative k-cycles define the same class if and only if their

difference is a relative boundary.

If X ′ is another metric space with a subset Y ′, and f : X → X ′ is a continuous map

with f (Y) ⊂ Y ′, we denote by f∗ the induced homomorphisms f∗ : Ck(X, Y) → Ck(X ′, Y ′),
and also the homomorphisms f∗ : Hk(X, Y) → Hk(X ′, Y ′). These are given by f∗σ = f ◦ σ

for singular simplices, f∗
∑

i kiσi = ∑
i kif∗σi for chains and f∗[σ ] = [f∗σ ] for homology

classes.

Given a continuous homotopy H : X × I → X ′ with H(Y × I) ⊂ Y ′, there exists a

sequence of homomorphisms

P : Ck(X, Y) → Ck+1(X ′, Y ′),

such that

H1∗ − H0∗ = P∂ + ∂P. (3)

Here Ht(x) = H(x, t). Formula (3) is called the homotopy formula.

A continuous f : X → Y is called a retraction if f ◦ iY = idY . The set Y is then

called a retract of X. If Y is a retract of one if its neighborhoods in X, it is called a

neighborhood retract.



6 A. Lohvansuu

The corresponding objects in the Lipschitz category are obtained by replacing

each occurrence of “singular” or “continuous” with “Lipschitz.” The homotopies involved

in these definitions are then required to be Lipschitz with respect to the metric

d((x, t), (x′, t′)) = d(x, x′) + |t − t′|. We denote the groups of Lipschitz chains by CL∗(X, Y)

and the Lipschitz homology groups by HL∗ (X, Y). We define locally Lipshitz objects

similarly. However, due to compactness, there is often no difference between the

corresponding objects of Lipschitz and locally Lipschitz categories.

Lemma 2.1. Let Y ⊂ X ⊂ R
n be locally Lipschitz neighborhood retracts of R

n. Then

the inclusions

i : CL∗(X, Y) ↪→ C∗(X, Y)

induce isomorphisms on homology.

Lemma 2.1 follows from a more general result [19,Cor. 11.1.2], which holds for

pairs of locally Lipschitz contractible metric spaces (see [19] for the definition). It is

straightforward to show that the existence of locally Lipschitz neighborhood retractions

implies locally Lipschitz contractibility.

2.2 Modulus

Given a 1 < p < ∞ and a family M of Borel measures of Rn, the p-modulus of M is the

number

modpM := inf
ρ

∫
Rn

ρp dHn, (4)

where the infimum is taken over all Borel functions ρ : Rn → [0, ∞] with

∫
Rn

ρ dν ≥ 1 (5)

for every ν ∈ M. Such functions are called admissible for M. If there exists a subfamily

N ⊂ M such that modpN = 0 and (5) holds for all ν ∈ M − N , we say that ρ is p-weakly

admissible or simply weakly admissible if the choice of p is clear from the context. It

follows that the infimum in (4) does not change if we take it over p-weakly admissible

functions instead. Let us list some useful properties of the modulus.
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Lemma 2.2. Let M be a collection of Borel measures of Rn. Let 1 < p < ∞.

i) If ρi are p-integrable Borel functions that converge to a function ρ in Lp,

there exists a subsequence (ρij)j for which

∫
Rn

ρij dν
j→∞−→

∫
Rn

ρ dν

for almost every ν ∈ M. In particular, Borel representatives of Lp-limits of

admissible functions are weakly admissible.

ii) If modpM < ∞, then

modpM =
∫
Rn

ρp dHn

for a weakly admissible minimizer ρ, unique up to sets of Hn-measure zero.

Moreover,

modpM ≤
∫
Rn

φρp−1 dHn

for any other p-integrable weakly admissible φ.

iii) If M = ⋃∞
i=1 Mi with Mi ⊂ Mi+1 for all i, then

modpM = lim
i→∞

modpMi.

Claim i) is often referred to as Fuglede’s lemma. Proofs for i) and the first part

of ii) can be found in [7, Thm. 3]. The second part of ii) and iii) are generalizations of

[15, Lemma 5.2] and [25, Lemma 2.3], respectively. The same proofs apply.

In this paper we abbreviate

modp�A = modp{Hk S | S ∈ �A},

and

modq�B = modq{Hn−k S∗ | S∗ ∈ �B}.

2.3 Rectifiable sets

A subset of R
n is k-rectifiable if it is covered by the image of a subset of R

k under

a Lipschitz map. A subset of R
n is countably k-rectifiable if Hk-almost all of it is

contained in a countable union of k-rectifiable sets.
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See for example [5, 21] for basic theory on rectifiable sets. Note that the

definition of countable rectifiability in [5, 3.2.14] is slightly different from ours.

Let us record some useful facts on rectifiable sets. The following Fubini-type

lemma is an application of [5, 3.2.23] and [5, 2.6.2].

Lemma 2.3. Suppose S∗ is a countably k-rectifiable subset of Rn and S is a countable

union of l-rectifiable subsets of Rm. Then S∗ × S is a countably (k + l)-rectifiable subset

of Rn × R
m, and

∫
S∗×S

g(x, y) dHk+l(x, y) =
∫

S∗

∫
S

g(x, y) dHl(y) dHk(x)

for any positive Borel function g on R
n × R

m.

Lemma 2.3 does not hold for general countably l-rectifiable sets S, see [5, 3.2.24].

The second tool we need is the coarea formula, see for example, [21,12.7].

Lemma 2.4. Suppose m ≤ k. Let S be a countably k-rectifiable subset of R
n and let

u : Rn → R
m be locally Lipschitz. Then

∫
Rm

∫
u−1(z)∩S

g dHk−m dHm(z) =
∫

S
gJS

u dHk (6)

for every positive Borel function g on S.

Let us define the Jacobian JS
u appearing in (6). Details can be found in [21, §12].

Suppose first that S is an embedded C1 k-submanifold (without boundary) of R
n. Then

u is differentiable at Hk-almost every x ∈ S. Fix such an x, and let {E1, . . . , Ek} be an

orthonormal basis for the tangent space of S at x. Let Du(x) be the Jacobian matrix of u

at x with respect to standard bases of Rn and R
m. We set

JS
u(x) :=

√
det(dSu(x)dSu(x)t),

where dSu(x) is the matrix with columns Du(x)Ei. It can be shown that JS
u(x) does not

depend on the choice of the basis {Ei}.
More generally, every countably k-rectifiable set S can be expressed as a disjoint

union S = ⋃∞
i=0 Mi, where Hk(M0) = 0 and each Mi for i ≥ 1 is contained in an embedded
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C1 k-submanifold Ni of Rn. Given an x ∈ Mi with i ≥ 1, we set

JS
u(x) := JNi

u (x).

Then JS
u is well defined Hk-almost everywhere on S. It can be shown that JS

u does not

depend on the decomposition S = ⋃∞
i=0 Mi, up to sets of Hk-measure zero.

3 Proof of Theorem 1.1

Given any set S ⊂ R
n and a vector y ∈ R

n we denote

Sy = {x + y | x ∈ S}

and

Nε(S) = {x | d(x, S) < ε}.

Denote by �∗
A the collection of (n − k)-rectifiable subsets S∗ of Q − A, such that the

homomorphism

i∗ : HL
k (Q − S∗, A) → HL

k (Q, A)

induced by inclusion is trivial. Lemma 3.5 below implies that �B ⊂ �∗
A. Every set S∗ ∈ �∗

A

intersects with every S ∈ �A in a nonempty set. To see this, note that if |σ | ∩ S∗ is empty

for some Lipschitz cycle σ ∈ Ck(Q) relative to A, then [σ ] = i∗[σ ] = 0 in HL
k (Q, A) by the

definition of �∗
A.

We abbreviate

modq�∗
A := modq{Hn−k S∗ | S∗ ∈ �∗

A}.

Theorem 1.1 is then implied by the following more general result.

Theorem 3.1. For every 1 < p < ∞

(modp�A)1/p(modq�∗
A)1/q ≤ 1,

where q = p
p−1 .
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The rest of this section is focused on the proof of Theorem 3.1.

For each δ > 0 let �δ
A be the subcollection of �A consisting of those sets whose

distance to B is at least 100δ. Analogously, the subcollection �∗δ
A consists of the elements

of �∗
A whose distance to A is at least 100δ. In light of iii) of Lemma 2.2, it suffices to show

that

(modp�δ
A)1/p(modq�∗δ

A )1/q ≤ 1 (7)

for all δ. Fix a δ for the rest of the proof. We may assume without loss of generality that

the moduli in question are nonzero and the collections �δ
A and �∗δ

A are nonempty.

The following intersection property of the elements of �A and �∗
A forms the

topological core of Theorem 3.1.

Proposition 3.2. The intersection Sz ∩ S∗ is nonempty for every S ∈ �δ
A, S∗ ∈ �∗δ

A and

|z| < 10δ.

We postpone the proof to Subsection 3.1.

Let S ∈ �δ
A. Observe that the map

g �→
∫

S
g dHk (8)

is a distribution in R
n. Thus we have by [5, 4.1.2] that

∫
Q

φS
ε g dHn ε→0−→

∫
S

g dHk (9)

for every smooth compactly supported function g, where

φS
ε (x) :=

∫
S
φε(x − y) dHk(y)

is the convolution of the distribution (8) with respect to a smooth kernel φ. That is,

φε(x) = ε−nφ(ε−1x) and φ is a nonnegative smooth function on R
n that vanishes outside

the unit ball Bn and satisfies
∫
Bn φ dHn = 1.

Smoothness is convenient for avoiding tedious technicalities, but to see the

geometry behind the arguments that follow, the reader is encouraged to repeat the proof

with the nonsmooth kernel φ = |Bn|−1χ
Bn .

Theorem 3.1 follows via (7) from the following proposition.
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Proposition 3.3. The convolution φ
Sz
ε is admissible for �∗δ

A for all ε < δ and all |z| < δ.

Proof. Fix an ε < δ and a set S∗ ∈ �∗δ
A . Let z = 0 for now. By Lemma 2.3

∫
S∗

φS
ε (x) dHn−k(x) =

∫
S∗

∫
S
φε(x − y) dHk(y)dHn−k(x)

=
∫

S∗

∫
S∩Nε(S∗)

φε(x − y) dHk(y)dHn−k(x)

=
∫

(S∗×S)∩{|x−y|<ε}
φε(x − y) dHn(x, y).

Now we can apply the coarea formula, Lemma 2.4, on the map u(x, y) = x − y to obtain

∫
S∗

φS
ε (x) dHn−k(x) ≥

∫
εBn

∫
(S∗×S)∩{x−y=w}

φε(w) dH0dHn(w) (10)

since JS∗×S
u ≤ 1. To see this, note that for any (n − k)- and k-dimensional embedded

C1 submanifolds N∗ and N of R
n the matrix dN∗×Nu consists of unit column vectors.

Thus JN∗×N
u ≤ 1. It follows that JS∗×S

u ≤ 1 as well, since it can be computed via J
M∗

i ×Mj
u

with i, j ≥ 1, where S∗ = ⋃∞
i=0 M∗

i and S = ⋃∞
i=0 Mj are decompositions of S∗ and S as in

the discussion following Lemma 2.4. Note that the sets M∗
0 × S and S∗ × M0 have zero

Hn-measure by Lemma 2.3.

Finally, we apply Proposition 3.2 on (10) and obtain

∫
S∗

φS
ε (x) dHn−k(x) ≥

∫
εBn

φε(w) dHn(w) = 1.

The proof in the case of general z reduces to the case z = 0 via

φSz
ε (x) = φS

ε (x − z), (11)

since Proposition 3.2 can still be applied. �

Proof of Theorem 3.1. The q-modulus of �∗δ
A is finite by Proposition 3.3. Let ρ be the

unique weak minimizer of modq�∗δ
A given by ii) of Lemma 2.2. We may assume that ρ

vanishes in N10δ(A) and is defined as zero outside Q. Let gr be the smooth convolution

gr(x) :=
∫

rBn
ρq−1(x + y)φr(y) dHn(y).
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Let S ∈ �δ
A and let ε < δ. Proposition 3.3 and ii) of Lemma 2.2 imply

modq�∗δ
A ≤

∫
Q

φSz
ε ρq−1 dHn

for all |z| < δ and S ∈ �δ
A. Note that the product φ

Sz
ε ρq−1 vanishes in N10δ(∂Q), so by (11)

and a change of variables

modq�∗δ
A ≤

∫
Q

φS
ε (x)ρq−1(x + z) dHn(x)

for all |z| < δ. Multiplying both sides by φr(z) and integrating over z yields

modq�∗δ
A ≤

∫
Q

φS
ε gr dHn

by Fubini’s theorem. Letting ε → 0 and then r → 0 yields

modq�∗δ
A ≤

∫
S
ρq−1 dHk

for modp-almost every S ∈ �δ
A by (9) and i) of Lemma 2.2. Thus

1

modq�∗δ
A

ρq−1

is weakly admissible for �δ
A, so

modp�δ
A ≤ (modq�∗δ

A )1−p,

which is a rearrangement of (7). �

3.1 Topological lemmas

In this subsection we complete the proof of Theorem 1.1 by proving Proposition 3.2 and

showing that �B ⊂ �∗
A. These are implied by the following two lemmas.

Lemma 3.4. Suppose S ∈ �δ
A and |y| < 10δ. Then there exists a singular relative cycle

σy, such that it generates Hk(Q, A) and its image coincides with Sy outside N100δ(A).

Lemma 3.5. Suppose σA and σB are relative singular chains that generate nontrivial

elements of Hk(Q, A) and Hn−k(Q, B), respectively. Then |σA| ∩ |σB| is nonempty.
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Proof of Lemma 3.4. The lemma follows from the homotopy formula (3). By the

definition of �A there is a relative cycle σ that generates Hk(Q, A) and has S as its

image. By applying barycentric subdivision multiple times, if necessary, we may assume

that σ splits into σ = σ1 + σ2, where |σ1| ⊂ N30δ(A) and |σ2| ⊂ Q − N20δ(∂Q). Let Ht be

the homotopy Ht(x) = x + ty for some fixed y with |y| < 10δ. Then by (3) there exist

homomorphisms P : Cl(U) → Cl+1(Uy) for all l and all open sets U ⊂ R
n, such that

H1∗ − H0∗ = ∂P + P∂. (12)

By applying this with U = Q − N20δ(∂Q), we see that P(∂σ2) and H1∗σ2 are chains in

Q − N10δ(∂Q). We let σy = σ1 − P(∂σ2) + H1∗σ2. Then σy − σ = ∂Pσ2 by (12), so σy belongs

to the same relative homology class as σ . To prove the final part of the lemma, note that

|∂σ2| ⊂ N30δ(A), since |∂σ2| = |∂σ1| ∩ int(Q). Thus |P(∂σ2)| ⊂ N40δ(A) and |σy|, |H1∗σ2| =
|σ2|y and Sy all coincide outside N100δ(A). �

Proof of Lemma 3.5. The lemma follows from the theory of intersection numbers

developed in [4]. We may assume that Q = Jn, where J = [−1, 1], and respectively

A = ∂Jk × Jn−k and B = Jk × ∂Jn−k. Let σA and σB be representatives of some nontrivial

classes of Hk(Q, A) and Hn−k(Q, B), respectively. Suppose |σA| ∩ |σB| = ∅. Then we can

deform σA and σB slightly, if necessary, and assume that |σA| ∩ B = ∅ = |σB| ∩ A. This

allows us to define the intersection number [σA] ◦ [σB] ∈ Hn(Rn,Rn − {0}) � Z of the

classes [σA] and [σB], as in [4, VII.4].

The intersection number of the two classes is defined (up to sign) by pushing the

outer product

[σA] × [σB] ∈ Hn(Q × Q, A × Q ∪ Q × B)

forward with the map u(x, y) = x − y. Notice the analogy with the proof of

Proposition 3.3. We do not describe the definition of the outer product here, as it is

rather complicated and would take us too far away from the main topic.

Let us compute the intersection number by using two different pairs of represen-

tatives for [σA] and [σB]. On one hand, since the images of the representatives σA and σB

do not intersect, Propositions 4.5 and 4.6 of [4,VII] imply that [σA]◦ [σB] = 0. On the other

hand, [σA] and [σB] admit representatives that are integer multiples of triangulations of

the subspaces Jk ×{0} and {0}× Jn−k, so combining Proposition 4.5 and Example 4.10 of

[4, VII] shows that [σA] ◦ [σB] is nontrivial. �
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4 Lower Bound and Related Open Problems

Theorems 1.1 and 3.1 raise the question:

Question 4.1. Do the lower bounds

1 ≤ (modp�A)1/p(modq�B)1/q (13)

or

1 ≤ (modp�A)1/p(modq�∗
A)1/q (14)

hold whenever Q, A, and B are as in Theorem 1.1?

Since �B ⊂ �∗
A, (13) implies (14). Most existing proofs of such lower bounds

rely on some variation of the coarea formula, Lemma 2.4. However, the proof in [6] is

different. Alternative approaches can also be found in the discrete setting [3].

In [6] a lower bound is proved for de Rham cohomology classes. Hence it may be

possible to answer Question 4.1 by finding a connection between the modulus of �A (or

�B), which can be thought of as the modulus of a homology class, and the modulus of

a suitable cohomology class. This is of course easier said than done. For instance, it is

not very clear what “suitable cohomology” should mean, when Q is nonsmooth. It seems

these kinds of questions are still largely unexplored.

Let us sketch a proof of (14) in the special case k = 1. Then A consists of two

opposite faces A0 and A1 of Q and, recalling the notation from the introduction,

modp�A = modp�(A0, A1; Q).

Moreover, by [20]

modp�(A0, A1; Q) = capp�(A0, A1; Q), (15)

where the (Lipschitz) capacity is defined by

capp�(A0, A1; Q) := inf
u

∫
Q

|∇u|p dHn,
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and the infimum is taken over Lipschitz functions u : Q → I with u|A0
= 0 and u|A1

= 1.

Then by the coarea formula

1 ≤
∫

I

∫
u−1(t)

ρ dHn−1dt =
∫

Q
ρ|∇u| dHn

for any integrable ρ admissible for �∗
A, since by [5, 3.2.15] almost every level set u−1(t)

is an element of �∗
A. Now the lower bound (14) follows from Hölder’s inequality and (15).

Similar ideas can be used to prove that Theorems 1.1 and 3.1 are sharp for any n

and k. Let us show that (13) holds whenever Q = Q1 × Q2, where Q1 ⊂ R
k and Q2 ⊂ R

n−k

are k- and (n − k)-dimensional topological cubes as in Theorem 1.1, A = ∂Q1 × Q2 and

B = Q1 × ∂Q2. Then it suffices to show that

modp�A = Hn−k(Q2)

Hk(Q1)p−1
and modq�B = Hk(Q1)

Hn−k(Q2)q−1
.

The proofs of the two formulas are identical, so we only consider �A. For every y ∈ Q2

and ρ admissible for �A

1 ≤
∫

Q1×{y}
ρ dHk,

so by Hölder’s inequality

1 ≤
(∫

Q1×{y}
ρp dHk

)1/p

Hk(Q1)1/q,

from which we obtain the inequality “≥” by integrating over y and applying Fubini’s

theorem (or the coarea formula applied on the projection π2(x, y) = y). The reverse

inequality follows from the observation that Hk(Q1)−1χQ is admissible for �A.

It is also noteworthy that in this case modq�B = modq�∗
A, and both are equal to

the q-modulus of the slices {x} × Q2.

Observe that if we let λ = Hk(Q1)−1/k and use a scaled projection map

λπ1(x, y) = λx instead, we find that Hk(λπ1(Q1 × Q2)) = 1 and Jλπ1
= Hk(Q1)−1χQ.

That is, the minimizer of modp�A is the Jacobian of λπ1. Moreover, the level sets of λπ1

are elements of �B.
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Inspired by this example we extend the definition of the capacity to general Q

and A by

capp�A := inf
u

∫
Q

Jp
u dHn,

where the infimum is taken over all such Lipschitz maps u : (Q, A) → (Ū, ∂U), that U is

a domain in R
k normalized with Hk(U) = 1, (Ū, ∂U) is homeomorphic to (B̄k, ∂Bk), and

the induced homomorphism

u∗ : Hk(Q, A) → Hk(Ū, ∂U) � Z (16)

is an isomorphism. We observe that U ⊂ u(S) for any S ∈ �A, so almost every level set

of u is in �∗
A, since Hk(Ū − {x}, ∂U) is trivial for all x ∈ U. Moreover, the Cauchy–Binet

formula implies that Ju ≥ JS
u, so

∫
S

Ju dHk ≥
∫

S
JS

u dHk ≥
∫

U
dHk = 1

by Lemma 2.4. Thus Ju is admissible for �A and

modp�A ≤ capp�A.

It is unknown whether the reverse inequality is true, but it would imply (14). To prove

the reverse inequality one would have to be able to construct the required Lipschitz

maps u. This seems to be very difficult when k > 1, especially with a given Ju. If k = 1,

the situation is considerably simpler, since then Ju = |∇u| and the unit interval I is

practically the only choice of U.
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