Näytä suppeat kuvailutiedot

dc.contributor.authorZhu, Yongjie
dc.contributor.authorParviainen, Tiina
dc.contributor.authorHeinilä, Erkka
dc.contributor.authorParkkonen, Lauri
dc.contributor.authorHyvärinen, Aapo
dc.date.accessioned2023-05-10T06:43:28Z
dc.date.available2023-05-10T06:43:28Z
dc.date.issued2023
dc.identifier.citationZhu, Y., Parviainen, T., Heinilä, E., Parkkonen, L., & Hyvärinen, A. (2023). Unsupervised representation learning of spontaneous MEG data with nonlinear ICA. <i>Neuroimage</i>, <i>274</i>, Article 120142. <a href="https://doi.org/10.1016/j.neuroimage.2023.120142" target="_blank">https://doi.org/10.1016/j.neuroimage.2023.120142</a>
dc.identifier.otherCONVID_182946272
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/86853
dc.description.abstractResting-state magnetoencephalography (MEG) data show complex but structured spatiotemporal patterns. However, the neurophysiological basis of these signal patterns is not fully known and the underlying signal sources are mixed in MEG measurements. Here, we developed a method based on the nonlinear independent component analysis (ICA), a generative model trainable with unsupervised learning, to learn representations from resting-state MEG data. After being trained with a large dataset from the Cam-CAN repository, the model has learned to represent and generate patterns of spontaneous cortical activity using latent nonlinear components, which reflects principal cortical patterns with specific spectral modes. When applied to the downstream classification task of audio-visual MEG, the nonlinear ICA model achieves competitive performance with deep neural networks despite limited access to labels. We further validate the generalizability of the model across different datasets by applying it to an independent neurofeedback dataset for decoding the subject's attentional states, providing a real-time feature extraction and decoding mindfulness and thought-inducing tasks with an accuracy of around 70% at the individual level, which is much higher than obtained by linear ICA or other baseline methods. Our results demonstrate that nonlinear ICA is a valuable addition to existing tools, particularly suited for unsupervised representation learning of spontaneous MEG activity which can then be applied to specific goals or tasks when labelled data are scarce.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.ispartofseriesNeuroimage
dc.rightsCC BY-NC-ND 4.0
dc.subject.othernonlinear independent component analysis (ICA)
dc.subject.otherunsupervised learning
dc.subject.otherdeep generative model
dc.subject.otherresting-state network
dc.subject.othernon-stationarity
dc.subject.otherneurofeedback
dc.subject.othermagnetoencephalography (MEG)
dc.titleUnsupervised representation learning of spontaneous MEG data with nonlinear ICA
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202305102933
dc.contributor.laitosPsykologian laitosfi
dc.contributor.laitosDepartment of Psychologyen
dc.contributor.oppiainePsykologiafi
dc.contributor.oppiaineMonitieteinen aivotutkimuskeskusfi
dc.contributor.oppiaineHyvinvoinnin tutkimuksen yhteisöfi
dc.contributor.oppiainePsychologyen
dc.contributor.oppiaineCentre for Interdisciplinary Brain Researchen
dc.contributor.oppiaineSchool of Wellbeingen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1053-8119
dc.relation.volume274
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 The Author(s). Published by Elsevier Inc.
dc.rights.accesslevelopenAccessfi
dc.subject.ysoMEG
dc.subject.ysoneuropalaute
dc.subject.ysosyväoppiminen
dc.subject.ysokoneoppiminen
dc.subject.ysosignaalianalyysi
dc.subject.ysosignaalinkäsittely
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p3329
jyx.subject.urihttp://www.yso.fi/onto/yso/p39302
jyx.subject.urihttp://www.yso.fi/onto/yso/p39324
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p26805
jyx.subject.urihttp://www.yso.fi/onto/yso/p12266
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.neuroimage.2023.120142
jyx.fundinginformationWe wish to thank the reviewers and editors for the useful comments to improve the paper a lot. We thank Dr. Hiroshi Morioka for the useful discussion at the beginning of the project. L.P. was funded in part by the European Research Council (No. 678578). A.H. was supported by a Fellowship from CIFAR, and the Academy of Finland. The authors acknowledge the computational resources provided by the Aalto Science-IT project, and also wish to thank the Finnish Grid and Cloud Infrastructure (FGCI) for supporting this project with computational and data storage resources.‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0