dc.contributor.author | Zhu, Yongjie | |
dc.contributor.author | Parviainen, Tiina | |
dc.contributor.author | Heinilä, Erkka | |
dc.contributor.author | Parkkonen, Lauri | |
dc.contributor.author | Hyvärinen, Aapo | |
dc.date.accessioned | 2023-05-10T06:43:28Z | |
dc.date.available | 2023-05-10T06:43:28Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Zhu, Y., Parviainen, T., Heinilä, E., Parkkonen, L., & Hyvärinen, A. (2023). Unsupervised representation learning of spontaneous MEG data with nonlinear ICA. <i>Neuroimage</i>, <i>274</i>, Article 120142. <a href="https://doi.org/10.1016/j.neuroimage.2023.120142" target="_blank">https://doi.org/10.1016/j.neuroimage.2023.120142</a> | |
dc.identifier.other | CONVID_182946272 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/86853 | |
dc.description.abstract | Resting-state magnetoencephalography (MEG) data show complex but structured spatiotemporal patterns. However, the neurophysiological basis of these signal patterns is not fully known and the underlying signal sources are mixed in MEG measurements. Here, we developed a method based on the nonlinear independent component analysis (ICA), a generative model trainable with unsupervised learning, to learn representations from resting-state MEG data. After being trained with a large dataset from the Cam-CAN repository, the model has learned to represent and generate patterns of spontaneous cortical activity using latent nonlinear components, which reflects principal cortical patterns with specific spectral modes. When applied to the downstream classification task of audio-visual MEG, the nonlinear ICA model achieves competitive performance with deep neural networks despite limited access to labels. We further validate the generalizability of the model across different datasets by applying it to an independent neurofeedback dataset for decoding the subject's attentional states, providing a real-time feature extraction and decoding mindfulness and thought-inducing tasks with an accuracy of around 70% at the individual level, which is much higher than obtained by linear ICA or other baseline methods. Our results demonstrate that nonlinear ICA is a valuable addition to existing tools, particularly suited for unsupervised representation learning of spontaneous MEG activity which can then be applied to specific goals or tasks when labelled data are scarce. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier BV | |
dc.relation.ispartofseries | Neuroimage | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.subject.other | nonlinear independent component analysis (ICA) | |
dc.subject.other | unsupervised learning | |
dc.subject.other | deep generative model | |
dc.subject.other | resting-state network | |
dc.subject.other | non-stationarity | |
dc.subject.other | neurofeedback | |
dc.subject.other | magnetoencephalography (MEG) | |
dc.title | Unsupervised representation learning of spontaneous MEG data with nonlinear ICA | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202305102933 | |
dc.contributor.laitos | Psykologian laitos | fi |
dc.contributor.laitos | Department of Psychology | en |
dc.contributor.oppiaine | Psykologia | fi |
dc.contributor.oppiaine | Monitieteinen aivotutkimuskeskus | fi |
dc.contributor.oppiaine | Hyvinvoinnin tutkimuksen yhteisö | fi |
dc.contributor.oppiaine | Psychology | en |
dc.contributor.oppiaine | Centre for Interdisciplinary Brain Research | en |
dc.contributor.oppiaine | School of Wellbeing | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 1053-8119 | |
dc.relation.volume | 274 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2023 The Author(s). Published by Elsevier Inc. | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | MEG | |
dc.subject.yso | neuropalaute | |
dc.subject.yso | syväoppiminen | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | signaalianalyysi | |
dc.subject.yso | signaalinkäsittely | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3329 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p39302 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p39324 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26805 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12266 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.1016/j.neuroimage.2023.120142 | |
jyx.fundinginformation | We wish to thank the reviewers and editors for the useful comments to improve the paper a lot. We thank Dr. Hiroshi Morioka for the useful discussion at the beginning of the project. L.P. was funded in part by the European Research Council (No. 678578). A.H. was supported by a Fellowship from CIFAR, and the Academy of Finland. The authors acknowledge the computational resources provided by the Aalto Science-IT project, and also wish to thank the Finnish Grid and Cloud Infrastructure (FGCI) for supporting this project with computational and data storage resources. | |
dc.type.okm | A1 | |