Näytä suppeat kuvailutiedot

dc.contributor.authorHamis, Sara
dc.contributor.authorSomervuo, Panu
dc.contributor.authorÅgren, J. Arvid
dc.contributor.authorTadele Dagim, Shiferaw
dc.contributor.authorKesseli, Juha
dc.contributor.authorScott, Jacob G.
dc.contributor.authorNykter, Matti
dc.contributor.authorGerlee, Philip
dc.contributor.authorFinkelshtein, Dmitri
dc.contributor.authorOvaskainen, Otso
dc.date.accessioned2023-04-19T11:06:09Z
dc.date.available2023-04-19T11:06:09Z
dc.date.issued2023
dc.identifier.citationHamis, S., Somervuo, P., Ågren, J. A., Tadele Dagim, S., Kesseli, J., Scott, J. G., Nykter, M., Gerlee, P., Finkelshtein, D., & Ovaskainen, O. (2023). Spatial cumulant models enable spatially informed treatment strategies and analysis of local interactions in cancer systems. <i>Journal of Mathematical Biology</i>, <i>86</i>(5), Article 68. <a href="https://doi.org/10.1007/s00285-023-01903-x" target="_blank">https://doi.org/10.1007/s00285-023-01903-x</a>
dc.identifier.otherCONVID_182750934
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/86441
dc.description.abstractTheoretical and applied cancer studies that use individual-based models (IBMs) have been limited by the lack of a mathematical formulation that enables rigorous analysis of these models. However, spatial cumulant models (SCMs), which have arisen from theoretical ecology, describe population dynamics generated by a specific family of IBMs, namely spatio-temporal point processes (STPPs). SCMs are spatially resolved population models formulated by a system of differential equations that approximate the dynamics of two STPP-generated summary statistics: first-order spatial cumulants (densities), and second-order spatial cumulants (spatial covariances). We exemplify how SCMs can be used in mathematical oncology by modelling theoretical cancer cell populations comprising interacting growth factor-producing and non-producing cells. To formulate model equations, we use computational tools that enable the generation of STPPs, SCMs and mean-field population models (MFPMs) from user-defined model descriptions (Cornell et al. Nat Commun 10:4716, 2019). To calculate and compare STPP, SCM and MFPM-generated summary statistics, we develop an application-agnostic computational pipeline. Our results demonstrate that SCMs can capture STPP-generated population density dynamics, even when MFPMs fail to do so. From both MFPM and SCM equations, we derive treatment-induced death rates required to achieve non-growing cell populations. When testing these treatment strategies in STPP-generated cell populations, our results demonstrate that SCM-informed strategies outperform MFPM-informed strategies in terms of inhibiting population growths. We thus demonstrate that SCMs provide a new framework in which to study cell-cell interactions, and can be used to describe and perturb STPP-generated cell population dynamics. We, therefore, argue that SCMs can be used to increase IBMs’ applicability in cancer research.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Science and Business Media LLC
dc.relation.ispartofseriesJournal of Mathematical Biology
dc.rightsCC BY 4.0
dc.subject.otherindividual-based models
dc.subject.otherspatio-temporal point processes
dc.subject.otherspatial moments
dc.subject.othercancer eco-evolution
dc.subject.othermathematical oncology
dc.titleSpatial cumulant models enable spatially informed treatment strategies and analysis of local interactions in cancer systems
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202304192560
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0303-6812
dc.relation.numberinseries5
dc.relation.volume86
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2023
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber856506
dc.relation.grantnumber856506
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/856506/EU//LIFEPLAN
dc.subject.ysoonkologia
dc.subject.ysosyöpäsolut
dc.subject.ysoMarkovin ketjut
dc.subject.ysomatemaattiset mallit
dc.subject.ysopopulaatiodynamiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p12865
jyx.subject.urihttp://www.yso.fi/onto/yso/p23898
jyx.subject.urihttp://www.yso.fi/onto/yso/p13075
jyx.subject.urihttp://www.yso.fi/onto/yso/p11401
jyx.subject.urihttp://www.yso.fi/onto/yso/p23558
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s00285-023-01903-x
dc.relation.funderEuropean Commissionen
dc.relation.funderEuroopan komissiofi
jyx.fundingprogramERC European Research Council, H2020en
jyx.fundingprogramERC European Research Council, H2020fi
jyx.fundinginformationOpen access funding provided by Tampere University including Tampere University Hospital, Tampere University of Applied Sciences (TUNI). SH was funded by Wenner-Gren Stiftelserna/The Wenner-Gren Foundations (WGF2022-0044), the Tampere Institute for Advanced Study (2021-2023) and the Jyväskylv University Visiting Fellow Programme 2021. JAÅ was funded by Wenner-Gren Stiftelserna/The Wenner-Gren Foundations (WGF2018-0083). DST was funded by the Norwegian Research Council (NRC). JGS was funded by the National Institutes of Health (5R37CA244613-02) and the American Cancer Society Research Scholar Grant (RSG-20-096-01). MN was funded by the Academy of Finland Center of Excellence programme (Project No. 312043). OO was funded by the Academy of Finland (Grant No. 309581), the Jane and Aatos Erkko Foundation, the Research Council of Norway through its Centres of Excellence Funding Scheme (223257), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 856506; ERC-synergy project LIFEPLAN).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0