Näytä suppeat kuvailutiedot

dc.contributor.authorNiazi, Tahira
dc.contributor.authorDas, Teerath
dc.contributor.authorAhmed, Ghufran
dc.contributor.authorWaqas, Syed Muhammad
dc.contributor.authorKhan, Sumra
dc.contributor.authorKhan, Suleman
dc.contributor.authorAbdelatif, Ahmed Abdelaziz
dc.contributor.authorWasi, Shaukat
dc.date.accessioned2023-03-06T07:24:16Z
dc.date.available2023-03-06T07:24:16Z
dc.date.issued2023
dc.identifier.citationNiazi, T., Das, T., Ahmed, G., Waqas, S. M., Khan, S., Khan, S., Abdelatif, A. A., & Wasi, S. (2023). Investigating Novice Developers’ Code Commenting Trends Using Machine Learning Techniques. <i>Algorithms</i>, <i>16</i>(1), Article 53. <a href="https://doi.org/10.3390/a16010053" target="_blank">https://doi.org/10.3390/a16010053</a>
dc.identifier.otherCONVID_177142509
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/85762
dc.description.abstractCode comments are considered an efficient way to document the functionality of a particular block of code. Code commenting is a common practice among developers to explain the purpose of the code in order to improve code comprehension and readability. Researchers investigated the effect of code comments on software development tasks and demonstrated the use of comments in several ways, including maintenance, reusability, bug detection, etc. Given the importance of code comments, it becomes vital for novice developers to brush up on their code commenting skills. In this study, we initially investigated what types of comments novice students document in their source code and further categorized those comments using a machine learning approach. The work involves the initial manual classification of code comments and then building a machine learning model to classify student code comments automatically. The findings of our study revealed that novice developers/students’ comments are mainly related to Literal (26.66%) and Insufficient (26.66%). Further, we proposed and extended the taxonomy of such source code comments by adding a few more categories, i.e., License (5.18%), Profile (4.80%), Irrelevant (4.80%), Commented Code (4.44%), Autogenerated (1.48%), and Improper (1.10%). Moreover, we assessed our approach with three different machine-learning classifiers. Our implementation of machine learning models found that Decision Tree resulted in the overall highest accuracy, i.e., 85%. This study helps in predicting the type of code comments for a novice developer using a machine learning approach that can be implemented to generate automated feedback for students, thus saving teachers time for manual one-on-one feedback, which is a time-consuming activity.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.ispartofseriesAlgorithms
dc.rightsCC BY 4.0
dc.subject.othersource code comments
dc.subject.otherclassification
dc.subject.othermachine learning techniques
dc.titleInvestigating Novice Developers’ Code Commenting Trends Using Machine Learning Techniques
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202303062021
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1999-4893
dc.relation.numberinseries1
dc.relation.volume16
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 by the authors. Licensee MDPI, Basel, Switzerland.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoohjelmistokehitys
dc.subject.ysolähdekoodit
dc.subject.ysovasta-alkajat
dc.subject.ysokoneoppiminen
dc.subject.ysoohjelmointi
dc.subject.ysoluokitus (toiminta)
dc.subject.ysoohjelmistokehittäjät
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p21530
jyx.subject.urihttp://www.yso.fi/onto/yso/p9343
jyx.subject.urihttp://www.yso.fi/onto/yso/p23709
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p4887
jyx.subject.urihttp://www.yso.fi/onto/yso/p12668
jyx.subject.urihttp://www.yso.fi/onto/yso/p29407
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3390/a16010053
jyx.fundinginformationThis research received no external funding.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0