Investigating Novice Developers’ Code Commenting Trends Using Machine Learning Techniques
Niazi, T., Das, T., Ahmed, G., Waqas, S. M., Khan, S., Khan, S., Abdelatif, A. A., & Wasi, S. (2023). Investigating Novice Developers’ Code Commenting Trends Using Machine Learning Techniques. Algorithms, 16(1), Article 53. https://doi.org/10.3390/a16010053
Published in
AlgorithmsAuthors
Date
2023Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland.
Code comments are considered an efficient way to document the functionality of a particular block of code. Code commenting is a common practice among developers to explain the purpose of the code in order to improve code comprehension and readability. Researchers investigated the effect of code comments on software development tasks and demonstrated the use of comments in several ways, including maintenance, reusability, bug detection, etc. Given the importance of code comments, it becomes vital for novice developers to brush up on their code commenting skills. In this study, we initially investigated what types of comments novice students document in their source code and further categorized those comments using a machine learning approach. The work involves the initial manual classification of code comments and then building a machine learning model to classify student code comments automatically. The findings of our study revealed that novice developers/students’ comments are mainly related to Literal (26.66%) and Insufficient (26.66%). Further, we proposed and extended the taxonomy of such source code comments by adding a few more categories, i.e., License (5.18%), Profile (4.80%), Irrelevant (4.80%), Commented Code (4.44%), Autogenerated (1.48%), and Improper (1.10%). Moreover, we assessed our approach with three different machine-learning classifiers. Our implementation of machine learning models found that Decision Tree resulted in the overall highest accuracy, i.e., 85%. This study helps in predicting the type of code comments for a novice developer using a machine learning approach that can be implemented to generate automated feedback for students, thus saving teachers time for manual one-on-one feedback, which is a time-consuming activity.
...
Publisher
MDPI AGISSN Search the Publication Forum
1999-4893Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/177142509
Metadata
Show full item recordCollections
Additional information about funding
This research received no external funding.License
Related items
Showing items with similar title or keywords.
-
Updating strategies for distance based classification model with recursive least squares
Raita-Hakola, Anna-Maria; Pölönen, Ilkka (Copernicus Publications, 2022)The idea is to create a self-learning Minimal Learning Machine (MLM) model that is computationally efficient, easy to implement and performs with high accuracy. The study has two hypotheses. Experiment A examines the ... -
Approaches and challenges of automatic vulnerability classification using natural language processing and machine learning techniques
Jormakka, Ossi (2019)Automatisoitu haavoittuvuuksien etsiminen ja haavoittuvuuksien yksityiskohtien ennustaminen voi auttaa asiantuntijoita priorisoimaan ohjelmistovirheitä, joka voi johtaa nopeampaan virheenkorjaukseen. Tässä työssä käytettiin ... -
The Truth is Out There : Focusing on Smaller to Guess Bigger in Image Classification
Terziyan, Vagan; Kaikova, Olena; Malyk, Diana; Branytskyi, Vladyslav (Elsevier, 2023)In Artificial Intelligence (AI) in general and in Machine Learning (ML) in particular, which are important and integral components of modern Industry 4.0, we often deal with uncertainty, e.g., lack of complete information ... -
Description of movement sensor dataset for dog behavior classification
Vehkaoja, Antti; Somppi, Sanni; Törnqvist, Heini; Valldeoriola Cardó, Anna; Kumpulainen, Pekka; Väätäjä, Heli; Majaranta, Päivi; Surakka, Veikko; Kujala, Miiamaaria V.; Vainio, Outi (Elsevier, 2022)Movement sensor data from seven static and dynamic dog behaviors (sitting, standing, lying down, trotting, walking, playing, and (treat) searching i.e. sniffing) was collected from 45 middle to large sized dogs with six ... -
Computer Science Outreach Workshop and Interest Development : A Longitudinal Study
Lakanen, Antti-Jussi; Isomöttönen, Ville (Vilnius University Institute of Mathematics and Informatics, 2018)This longitudinal study investigates the impact of an extra-curricular programming workshop in student interest development in computer science. The workshop was targeted at 12–18-year old youngsters. A survey was sent ...