Design and simulation of efficient combinational circuits based on a new XOR structure in QCA technology
Safaiezadeh, B., Mahdipour, E., Haghparast, M., Sayedsalehi, S., & Hosseinzadeh, M. (2021). Design and simulation of efficient combinational circuits based on a new XOR structure in QCA technology. Optical and Quantum Electronics, 53(12), Article 684. https://doi.org/10.1007/s11082-021-03294-z
Published in
Optical and Quantum ElectronicsAuthors
Date
2021Copyright
© 2021 the Authors
Quantum-dot cellular automata (QCA), due to its unique characteristics like low power consumption, nanoscale design, and high computing speed is considered as an emerging technology, and it can be used as an alternative for CMOS technology in circuit design for quantum computers in the near future. XOR gate has many applications in the design of digital circuits in QCA. In this paper, an efficient novel structure of XOR gate is proposed in QCA. Also, a novel 1-bit comparator circuit, 1-bit full adder, binary to gray and gray to binary convertor code based on the proposed XOR is designed and simulated using QCADesigner 2.0.3. The simulation results demonstrated that the proposed structures provide improvements compared to previous works in terms of QCA cells count, area, and circuit cost.
Publisher
SpringerISSN Search the Publication Forum
0306-8919Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/101759222
Metadata
Show full item recordCollections
Additional information about funding
Open Access funding provided by University of Jyväskylä (JYU).License
Related items
Showing items with similar title or keywords.
-
Design and simulation of QCA-based 3-bit binary to gray and vice versa code converter in reversible and non-reversible mode
Safaiezadeh, Behrouz; Mahdipour, Ebrahim; Haghparast, Majid; Sayedsalehi, Samira; Hosseinzadeh, Mehdi (Elsevier, 2022)The current Very Large-Scale Integration (VLSI) technology has reached its peak due to the fundamental physical limits of Complementary Metal-Oxide-Semiconductor (CMOS). Quantum-dot Cellular Automata (QCA) is considered a ... -
Novel high-performance QCA Fredkin gate and designing scalable QCA binary to gray and vice versa
Safaiezadeh, Behrouz; Kettunen, Lauri; Haghparast, Majid (Springer Science and Business Media LLC, 2023)In the design of digital logic circuits, QCA technology is an excellent alternative to CMOS technology. Its advantages over CMOS include low power consumption, fast circuit switching, and nanoscale design. Circuits that ... -
Efficient techniques for fault detection and location of multiple controlled Toffoli-based reversible circuit
Kheirandish, Davar; Haghparast, Majid; Reshadi, Midia; Hosseinzadeh, Mehdi (Springer, 2021)It is very important to detect and correct faults for ensuring the validity and reliability of these circuits. In this regard, a comparative study with related existing techniques is undertaken. Two techniques to achieve ... -
A Novel and Efficient square root Computation Quantum Circuit for Floating-point Standard
Gayathri, S. S.; Kumar, R.; Haghparast, Majid; Dhanalakshmi, Samiappan (Springer, 2022)It is imperative that quantum computing devices perform floating-point arithmetic operations. This paper presents a circuit design for floating-point square root operations designed using classical Babylonian algorithm. ... -
Toward Quaternary QCA : Novel Majority and XOR Fuzzy Gates
Akbari-Hasanjani, Reza; Sabbaghi-Nadooshan, Reza; Haghparast, Majid (Institute of Electrical and Electronics Engineers (IEEE), 2022)As an emerging nanotechnology, quantum-dot cellular automata (QCA) has been considered an alternative to CMOS technology that suffers from problems such as leakage current. Moreover, QCA is suitable for multi-valued logic ...