Näytä suppeat kuvailutiedot

dc.contributor.authorKomulainen, Sanna
dc.contributor.authorIresh Fernando, P. U. Ashvin
dc.contributor.authorMareš, Jiří
dc.contributor.authorSelent, Anne
dc.contributor.authorKhalili, Roya
dc.contributor.authorCesana, Paul T.
dc.contributor.authorEbeling, Andreas
dc.contributor.authorKantola, Anu M.
dc.contributor.authorBeyeh, Ngong Kodiah
dc.contributor.authorRissanen, Kari
dc.contributor.authorDeBoef, Brenton
dc.contributor.authorLantto, Perttu
dc.contributor.authorTelkki, Ville-Veikko
dc.date.accessioned2023-02-27T11:54:05Z
dc.date.available2023-02-27T11:54:05Z
dc.date.issued2023
dc.identifier.citationKomulainen, S., Iresh Fernando, P. U. A., Mareš, J., Selent, A., Khalili, R., Cesana, P. T., Ebeling, A., Kantola, A. M., Beyeh, N. K., Rissanen, K., DeBoef, B., Lantto, P., & Telkki, V.-V. (2023). Encapsulation of xenon by bridged resorcinarene cages with high 129Xe NMR chemical shift and efficient exchange dynamics. <i>Cell Reports Physical Science</i>, <i>4</i>(2), Article 101281. <a href="https://doi.org/10.1016/j.xcrp.2023.101281" target="_blank">https://doi.org/10.1016/j.xcrp.2023.101281</a>
dc.identifier.otherCONVID_176941579
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/85668
dc.description.abstractFunctionalized cages encapsulating xenon atoms enable highly sensitive, background-free molecular imaging through a technique known as HyperCEST 129Xe MRI. Here, we introduce a class of potential biosensor cage structures based on two resorcinarene macrocycles bridged either by aliphatic carbon chains or piperazines. First-principles-based modeling predicts a high chemical shift (about 345 ppm) outside the typical experimental observation window for 129Xe encapsulated by the aliphatically bridged cage and two 129Xe resonances for the piperazine-bridged cages corresponding to single and double loading. Based on the computational predictions as well as 129Xe chemical exchange saturation transfer (CEST) and T2 relaxation nuclear magnetic resonance experiments, we confirm Xe encapsulation in the aliphatically bridged and double encapsulation in the piperazine-bridged resorcinarene in methanol. The cages show fast Xe exchange rates (12,000–49,000 s−1), resulting in a high CEST response regardless of the relatively low binding constant (0.09–3 M−1).en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesCell Reports Physical Science
dc.rightsCC BY 4.0
dc.subject.othersupermolecules
dc.subject.otherfunctionalized cages
dc.subject.otherbiosensors
dc.subject.otherpiperazine-bridged resorcinarenes
dc.subject.otheraliphatically bridged resorcinarenes
dc.subject.other129Xe NMR
dc.subject.other129Xe HyperCEST MRI
dc.subject.otherfirst principal modeling
dc.subject.othermolecular dynamic simulations
dc.titleEncapsulation of xenon by bridged resorcinarene cages with high 129Xe NMR chemical shift and efficient exchange dynamics
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202302271930
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineOrgaaninen kemiafi
dc.contributor.oppiaineOrganic Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2666-3864
dc.relation.numberinseries2
dc.relation.volume4
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 The Author(s)
dc.rights.accesslevelopenAccessfi
dc.subject.ysoksenon
dc.subject.ysomolekyylidynamiikka
dc.subject.ysolaskennallinen kemia
dc.subject.ysosupramolekulaarinen kemia
dc.subject.ysobiosensorit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p17757
jyx.subject.urihttp://www.yso.fi/onto/yso/p29332
jyx.subject.urihttp://www.yso.fi/onto/yso/p23053
jyx.subject.urihttp://www.yso.fi/onto/yso/p37759
jyx.subject.urihttp://www.yso.fi/onto/yso/p22008
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.xcrp.2023.101281
jyx.fundinginformationFinancial support from the European Research Council (Project number 772110), Academy of Finland (grant no. 340099), and the University of Oulu (Kvantum Institute) is gratefully acknowledged. Part of the work was carried out with the support of the Center for Material Analysis, University of Oulu, Finland. Computational resources of CSC (Espoo, Finland) and the Finnish Grid and Cloud Infrastructure project (persistent identifier urn:nbn:fi:research-infras-2016072533) were used. American Chemical Society (N.K.B.: ACS-PRF grant no. 39427) and Oakland University, MI, USA, are acknowledged.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0