Show simple item record

dc.contributor.authorGigli, Nicola
dc.contributor.authorViolo, Ivan Yuri
dc.date.accessioned2023-02-23T11:19:57Z
dc.date.available2023-02-23T11:19:57Z
dc.date.issued2023
dc.identifier.citationGigli, N., & Violo, I. Y. (2023). Monotonicity Formulas for Harmonic Functions in RCD(0,N) Spaces. <i>Journal of Geometric Analysis</i>, <i>33</i>(3), Article 100. <a href="https://doi.org/10.1007/s12220-022-01131-7" target="_blank">https://doi.org/10.1007/s12220-022-01131-7</a>
dc.identifier.otherCONVID_176981172
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/85614
dc.description.abstractWe generalize to the RCD(0,N) setting a family of monotonicity formulas by Colding and Minicozzi for positive harmonic functions in Riemannian manifolds with nonnegative Ricci curvature. Rigidity and almost rigidity statements are also proven, the second appearing to be new even in the smooth setting. Motivated by the recent work in Agostiniani et al. (Invent. Math. 222(3):1033–1101, 2020), we also introduce the notion of electrostatic potential in RCD spaces, which also satisfies our monotonicity formulas. Our arguments are mainly based on new estimates for harmonic functions in RCD(K,N) spaces and on a new functional version of the ‘(almost) outer volume cone implies (almost) outer metric cone’ theorem.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesJournal of Geometric Analysis
dc.rightsCC BY 4.0
dc.subject.othermonotonicity formula
dc.subject.otherharmonic functions
dc.subject.otherRCD spaces
dc.subject.otheralmost rigidity
dc.titleMonotonicity Formulas for Harmonic Functions in RCD(0,N) Spaces
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202302231879
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1050-6926
dc.relation.numberinseries3
dc.relation.volume33
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2022
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysodifferentiaaligeometria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p16682
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s12220-022-01131-7
jyx.fundinginformationOpen Access funding provided by University of Jyväskylä (JYU).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0