Geometry of Degeneracy in Potential and Density Space
Penz, M., & van Leeuwen, R. (2023). Geometry of Degeneracy in Potential and Density Space. Quantum, 7, Article 918. https://doi.org/10.22331/q-2023-02-09-918
Julkaistu sarjassa
QuantumPäivämäärä
2023Tekijänoikeudet
© Authors, 2023
In a previous work [J. Chem. Phys. 155, 244111 (2021)], we found counterexamples to the fundamental Hohenberg-Kohn theorem from density-functional theory in finite-lattice systems represented by graphs. Here, we demonstrate that this only occurs at very peculiar and rare densities, those where density sets arising from degenerate ground states, called degeneracy regions, touch each other or the boundary of the whole density domain. Degeneracy regions are shown to generally be in the shape of the convex hull of an algebraic variety, even in the continuum setting. The geometry arising between density regions and the potentials that create them is analyzed and explained with examples that, among other shapes, feature the Roman surface.
Julkaisija
Verein zur Forderung des Open Access Publizierens in den QuantenwissenschaftenISSN Hae Julkaisufoorumista
2521-327XAsiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/176919605
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
R. v. L. further acknowledges the Academy of Finland for support under project no. 317139.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Geometrical perspective on spin–lattice density-functional theory
Penz, Markus; van Leeuwen, Robert (AIP Publishing, 2024)A recently developed viewpoint on the fundamentals of density-functional theory for finite interacting spin–lattice systems that centers around the notion of degeneracy regions is presented. It allows for an entirely ... -
Existence, uniqueness, and construction of the density-potential mapping in time-dependent density-functional theory
Ruggenthaler, Michael; Penz, Markus; van Leeuwen, Robert (Institute of Physics Publishing Ltd.; Institute of Physics, 2015)In this work we review the mapping from densities to potentials in quantum mechanics, which is the basic building block of time-dependent density-functional theory and the Kohn–Sham construction. We first present detailed ... -
Changes in femoral neck bone mineral density and structural strength during a 12-month multicomponent exercise intervention among older adults : Does accelerometer-measured physical activity matter?
Savikangas, T.; Suominen, T. H.; Alén, M.; Rantalainen, T.; Sipilä, S. (Elsevier, 2024)Age-related bone loss is to some extent unavoidable, but it may be decelerated with regular exercise continued into older age. Daily physical activity alongside structured exercise may be an important stimulus for maintaining ... -
Theory for the stationary polariton response in the presence of vibrations
Kansanen, Kalle S. U.; Asikainen, Aili; Toppari, J. Jussi; Groenhof, Gerrit; Heikkilä, Tero T. (American Physical Society, 2019)We construct a model describing the response of a hybrid system where the electromagnetic field—in particular, surface plasmon polaritons—couples strongly with electronic excitations of atoms or molecules. Our approach is ... -
Interacting Electrons in a Flat‐Band System within the Generalized Kadanoff–Baym Ansatz
Cosco, Francesco; Tuovinen, Riku; Lo Gullo, Nicolino (Wiley-VCH Verlag, 2024)In this work, the study of the spectral properties of an open interacting system by solving the generalized Kadanoff-Baym ansatz (GKBA) master equation for the single-particle density matrix, namely the time-diagonal lesser ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.