Näytä suppeat kuvailutiedot

dc.contributor.authorShukla, Amit, K.
dc.contributor.authorSrivastav, Shubham
dc.contributor.authorKumar, Sandeep
dc.contributor.authorMuhuri, Pranab, K.
dc.date.accessioned2023-02-08T05:36:21Z
dc.date.available2023-02-08T05:36:21Z
dc.date.issued2023
dc.identifier.citationShukla, A., Srivastav, S., Kumar, S., & Muhuri, P. (2023). UInDeSI4.0 : An efficient Unsupervised Intrusion Detection System for network traffic flow in Industry 4.0 ecosystem. <i>Engineering Applications of Artificial Intelligence</i>, <i>120</i>, Article 105848. <a href="https://doi.org/10.1016/j.engappai.2023.105848" target="_blank">https://doi.org/10.1016/j.engappai.2023.105848</a>
dc.identifier.otherCONVID_176577639
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/85389
dc.description.abstractIn an Industry 4.0 ecosystem, all the essential components are digitally interconnected, and automation is integrated for higher productivity. However, it invites the risk of increasing cyber-attacks amid the current cyber explosion. The identification and monitoring of these malicious cyber-attacks and intrusions need efficient threat intelligence techniques or intrusion detection systems (IDSs). Reducing the false positive rate in detecting cyber threats is an important step for a safer and reliable environment in any industrial ecosystem. Available approaches for intrusion detection often suffer from high computational costs due to large number of feature instances. Therefore, this paper proposes a novel unsupervised IDS for Industry 4.0 which we term as: Unsupervised Intrusion Detection System for Industry 4.0 (UInDeSI4.0). We have substantiated the proposed UInDeSI4.0 approach through its experimentation on the well-known UNSW-NB15 Industry 4.0 dataset. The proposed UInDeSI4.0 employs feature selection approaches to obtain minimal and optimal features. These features are then used to train isolation forest to detect network traffic threats in an unsupervised manner. Accordingly, the proposed UInDeSI4.0 approach can efficiently differentiate between the normal events and the attacks or intrusions in environments with no label information. Experimental results show that the proposed UInDeSI4.0 provides better accuracy (63%) and a minimal feature set (nine) compared to traditional IDSs. In contrast to deep learning approaches, UInDeSI4.0 generates faster results with minimum features. In conclusion, we establish the superiority of UInDeSI4.0 approach as an accurate and computationally efficient IDS for Industry 4.0.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.ispartofseriesEngineering Applications of Artificial Intelligence
dc.rightsCC BY 4.0
dc.subject.otherisolation forest
dc.subject.otherindustry 4.0
dc.subject.otherintrusion detection
dc.subject.otherICA
dc.subject.otherrandom forest
dc.subject.otherprincipal component analysis
dc.titleUInDeSI4.0 : An efficient Unsupervised Intrusion Detection System for network traffic flow in Industry 4.0 ecosystem
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202302081669
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineComputing, Information Technology and Mathematicsfi
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineComputing, Information Technology and Mathematicsen
dc.contributor.oppiaineComputational Scienceen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0952-1976
dc.relation.volume120
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 The Author(s). Published by Elsevier Ltd.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysokyberturvallisuus
dc.subject.ysoverkkohyökkäykset
dc.subject.ysoälytekniikka
dc.subject.ysovalvontajärjestelmät
dc.subject.ysotuotantotekniikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p26189
jyx.subject.urihttp://www.yso.fi/onto/yso/p27466
jyx.subject.urihttp://www.yso.fi/onto/yso/p27260
jyx.subject.urihttp://www.yso.fi/onto/yso/p13003
jyx.subject.urihttp://www.yso.fi/onto/yso/p19050
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.engappai.2023.105848
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0