Näytä suppeat kuvailutiedot

dc.contributor.authorLiu, Wenya
dc.contributor.authorWang, Xiulin
dc.contributor.authorHämäläinen, Timo
dc.contributor.authorCong, Fengyu
dc.date.accessioned2023-02-02T06:23:29Z
dc.date.available2023-02-02T06:23:29Z
dc.date.issued2022
dc.identifier.citationLiu, W., Wang, X., Hämäläinen, T., & Cong, F. (2022). Exploring Oscillatory Dysconnectivity Networks in Major Depression during Resting State Using Coupled Tensor Decomposition. <i>IEEE Transactions on Biomedical Engineering</i>, <i>69</i>(8), 2691-2700. <a href="https://doi.org/10.1109/TBME.2022.3152413" target="_blank">https://doi.org/10.1109/TBME.2022.3152413</a>
dc.identifier.otherCONVID_104357735
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/85291
dc.description.abstractDysconnectivity of large-scale brain networks has been linked to major depression disorder (MDD) during resting state. Recent researches show that the temporal evolution of brain networks regulated by oscillations reveals novel mechanisms and neural characteristics of MDD. Our study applied a novel coupled tensor decomposition model to investigate the dysconnectivity networks characterized by spatio-temporal-spectral modes of covariation in MDD using resting electroencephalography. The phase lag index is used to calculate the functional connectivity within each time window at each frequency bin. Then, two adjacency tensors with the dimension of time frequency connectivity subject are constructed for the healthy group and the major depression group. We assume that the two groups share the same features for group similarity and retain individual characteristics for group differences. Considering that the constructed tensors are nonnegative and the components in spectral and adjacency modes are partially consistent among the two groups, we formulate a double-coupled nonnegative tensor decomposition model. To reduce computational complexity, we introduce the lowrank approximation. Then, the fast hierarchical alternative least squares algorithm is applied for model optimization. After clustering analysis, we summarize four oscillatory networks characterizing the healthy group and four oscillatory networks characterizing the major depression group, respectively. The proposed model may reveal novel mechanisms of pathoconnectomics in MDD during rest, and it can be easily extended to other psychiatric disorders.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartofseriesIEEE Transactions on Biomedical Engineering
dc.rightsIn Copyright
dc.subject.otherdynamic functional connectivity
dc.subject.othercoupled tensor decomposition
dc.subject.othermajor depression disorder
dc.subject.otheroscillatory networks
dc.subject.othertensors
dc.subject.otherbrain modeling
dc.subject.otherelectroencephalography
dc.subject.othertime-frequency analysis
dc.titleExploring Oscillatory Dysconnectivity Networks in Major Depression during Resting State Using Coupled Tensor Decomposition
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202302021574
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.description.reviewstatuspeerReviewed
dc.format.pagerange2691-2700
dc.relation.issn0018-9294
dc.relation.numberinseries8
dc.relation.volume69
dc.type.versionacceptedVersion
dc.rights.copyright© 2022 IEEE
dc.rights.accesslevelopenAccessfi
dc.subject.ysomallintaminen
dc.subject.ysoEEG
dc.subject.ysomasennus
dc.subject.ysoaivotutkimus
dc.subject.ysomielenterveyshäiriöt
dc.subject.ysoneuroverkot
dc.subject.ysoaivot
dc.subject.ysoneuraalilaskenta
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p3533
jyx.subject.urihttp://www.yso.fi/onto/yso/p3328
jyx.subject.urihttp://www.yso.fi/onto/yso/p7995
jyx.subject.urihttp://www.yso.fi/onto/yso/p23705
jyx.subject.urihttp://www.yso.fi/onto/yso/p990
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
jyx.subject.urihttp://www.yso.fi/onto/yso/p7040
jyx.subject.urihttp://www.yso.fi/onto/yso/p7291
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1109/TBME.2022.3152413
jyx.fundinginformationThis work was supported by National Natural Science Foundation of China (Grant No.91748105), National Foundation in China (No. JCKY2019110B009 & 2020-JCJQ-JJ-252), the Fundamental Research Funds for the Central Universities [DUT2019 & DUT20LAB303] in Dalian University of Technology in China, and the scholarships from China scholarship Council (No.201706060263)


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright