Altered EEG Oscillatory Brain Networks During Music-Listening in Major Depression
Zhu, Y., Wang, X., Mathiak, K., Toiviainen, P., Ristaniemi, T., Xu, J., Chang, Y., & Cong, F. (2021). Altered EEG Oscillatory Brain Networks During Music-Listening in Major Depression. International Journal of Neural Systems, 31(3), Article 2150001. https://doi.org/10.1142/S0129065721500015
Julkaistu sarjassa
International Journal of Neural SystemsTekijät
Xu, Jing |
Päivämäärä
2021Tekijänoikeudet
© World Scientific, 2020
To examine the electrophysiological underpinnings of the functional networks involved in music listening, previous approaches based on spatial independent component analysis (ICA) have recently been used to ongoing electroencephalography (EEG) and magnetoencephalography (MEG). However, those studies focused on healthy subjects, and failed to examine the group-level comparisons during music listening. Here, we combined group-level spatial Fourier ICA with acoustic feature extraction, to enable group comparisons in frequency-specific brain networks of musical feature processing. It was then applied to healthy subjects and subjects with major depressive disorder (MDD). The music-induced oscillatory brain patterns were determined by permutation correlation analysis between individual time courses of Fourier-ICA components and musical features. We found that (1) three components, including a beta sensorimotor network, a beta auditory network and an alpha medial visual network, were involved in music processing among most healthy subjects; and that (2) one alpha lateral component located in the left angular gyrus was engaged in music perception in most individuals with MDD. The proposed method allowed the statistical group comparison, and we found that: (1) the alpha lateral component was activated more strongly in healthy subjects than in the MDD individuals, and that (2) the derived frequency-dependent networks of musical feature processing seemed to be altered in MDD participants compared to healthy subjects. The proposed pipeline appears to be valuable for studying disrupted brain oscillations in psychiatric disorders during naturalistic paradigms.
...
Julkaisija
World ScientificISSN Hae Julkaisufoorumista
0129-0657Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/47601760
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Identifying Oscillatory Hyperconnectivity and Hypoconnectivity Networks in Major Depression Using Coupled Tensor Decomposition
Liu, Wenya; Wang, Xiulin; Xu, Jing; Chang, Yi.; Hämäläinen, Timo; Cong, Fengyu (Institute of Electrical and Electronics Engineers (IEEE), 2021)Previous researches demonstrate that major depression disorder (MDD) is associated with widespread network dysconnectivity, and the dynamics of functional connectivity networks are important to delineate the neural mechanisms ... -
Discovering hidden brain network responses to naturalistic stimuli via tensor component analysis of multi-subject fMRI data
Hu, Guoqiang; Li, Huanjie; Zhao, Wei; Hao, Yuxing; Bai, Zonglei; Nickerson, Lisa D.; Cong, Fengyu (Elsevier, 2022)The study of brain network interactions during naturalistic stimuli facilitates a deeper understanding of human brain function. To estimate large-scale brain networks evoked with naturalistic stimuli, a tensor component ... -
Shared and Unshared Feature Extraction in Major Depression During Music Listening Using Constrained Tensor Factorization
Wang, Xiulin; Liu, Wenya; Wang, Xiaoyu; Mu, Zhen; Xu, Jing; Chang, Yi; Zhang, Qing; Wu, Jianlin; Cong, Fengyu (Frontiers Media SA, 2021)Ongoing electroencephalography (EEG) signals are recorded as a mixture of stimulus-elicited EEG, spontaneous EEG and noises, which poses a huge challenge to current data analyzing techniques, especially when different ... -
Exploring Oscillatory Dysconnectivity Networks in Major Depression during Resting State Using Coupled Tensor Decomposition
Liu, Wenya; Wang, Xiulin; Hämäläinen, Timo; Cong, Fengyu (Institute of Electrical and Electronics Engineers (IEEE), 2022)Dysconnectivity of large-scale brain networks has been linked to major depression disorder (MDD) during resting state. Recent researches show that the temporal evolution of brain networks regulated by oscillations reveals ... -
Coupling of Action-Perception Brain Networks during Musical Pulse Processing : Evidence from Region-of-Interest-Based Independent Component Analysis
Burunat, Iballa; Tsatsishvili, Valeri; Brattico, Elvira; Toiviainen, Petri (Frontiers Research Foundation, 2017)Our sense of rhythm relies on orchestrated activity of several cerebral and cerebellar structures. Although functional connectivity studies have advanced our understanding of rhythm perception, this phenomenon has not ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.