Näytä suppeat kuvailutiedot

dc.contributor.authorZhang, Chi
dc.contributor.authorSun, Lina
dc.contributor.authorGe, Shuang
dc.contributor.authorChang, Yi
dc.contributor.authorJin, Mingyan
dc.contributor.authorXiao, Yang
dc.contributor.authorGao, Hanbing
dc.contributor.authorWang, Lin
dc.contributor.authorCong, Fengyu
dc.date.accessioned2023-02-02T06:08:30Z
dc.date.available2023-02-02T06:08:30Z
dc.date.issued2022
dc.identifier.citationZhang, C., Sun, L., Ge, S., Chang, Y., Jin, M., Xiao, Y., Gao, H., Wang, L., & Cong, F. (2022). Quantitative evaluation of short-term resting-state brain networks for primary insomnia diagnosis. <i>Biomedical signal processing and control</i>, <i>74</i>, Article 103498. <a href="https://doi.org/10.1016/j.bspc.2022.103498" target="_blank">https://doi.org/10.1016/j.bspc.2022.103498</a>
dc.identifier.otherCONVID_104125685
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/85285
dc.description.abstractPrimary insomnia (PI) manifesting as insufficient and non-restorative sleep disturbs the function of central nervous system. Electroencephalogram (EEG), as a technique of recording the electrical signals of the brain, has demonstrated potential to access and quantify PI. However, most existing EEG indices rely on time–frequency analysis and separate channels, which limits its clinical application. In this study, we propose a novel quantitative evaluation method by introducing spatial information from resting-state brain networks of insomniacs to make rapid diagnosis implementable. To suppress false positive observations of coupling attributed to signal spread, the connections were binarized based on an adaptive threshold technology so that the statistical network characteristics were extracted automatically to form a comprehensive measurement index. The clinical experiments proved that the specificity of PI brain networks could be quantified objectively by the comprehensive index in the resting state. PI specificity showed consistency across the connectivity estimated in time (Pearson Correlation Coefficient, PCC), phase (Phase Lag Index, PLI) and frequency (Granger Causality, GC) domains. All the three kinds of connectivity revealed the significant difference between the PI patients and normal subjects (PCC: p = 0.0021, PLI: p = 0.0071, GC: p = 0.0142). The strong connectivity of PI consistent with clinical rating scale indicates the hyperarousal of PI brain. It is difficult to achieve normal inhibition, so it consumes more resources in the resting state. Further, bidirectional long short-term memory (Bi-LSTM) network was applied to classify the healthy status (normal or PI) automatically and achieved 85% accuracy and 90% sensitivity, which demonstrated its potential for clinical diagnosis.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.ispartofseriesBiomedical signal processing and control
dc.relation.urihttp://dx.doi.org/10.1016/j.bspc.2022.103498
dc.rightsIn Copyright
dc.subject.otherinsomnia
dc.subject.otherEEG
dc.subject.otherconnectivity
dc.subject.otherfunctional brain network
dc.subject.othercausal brain network
dc.titleQuantitative evaluation of short-term resting-state brain networks for primary insomnia diagnosis
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202302021568
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1746-8094
dc.relation.volume74
dc.type.versionacceptedVersion
dc.rights.copyright© 2022 Elsevier
dc.rights.accesslevelopenAccessfi
dc.subject.ysouni (lepotila)
dc.subject.ysoaivotutkimus
dc.subject.ysodiagnostiikka
dc.subject.ysounettomuus
dc.subject.ysoaivot
dc.subject.ysoEEG
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p8299
jyx.subject.urihttp://www.yso.fi/onto/yso/p23705
jyx.subject.urihttp://www.yso.fi/onto/yso/p416
jyx.subject.urihttp://www.yso.fi/onto/yso/p26927
jyx.subject.urihttp://www.yso.fi/onto/yso/p7040
jyx.subject.urihttp://www.yso.fi/onto/yso/p3328
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1016/j.bspc.2022.103498
jyx.fundinginformationWe gratefully acknowledge the financial support from the National Natural Science Foundation of China (grant number: 61703069 and 62001312) and the Fundamental Research Funds for the Central Universities (grant number: DUT21GF301).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright