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Abstract:  16 

Primary insomnia (PI) manifesting as insufficient and non-restorative sleep disturbs the function of central nervous system. 17 

Electroencephalogram (EEG), as a technique of recording the electrical signals of the brain, has demonstrated potential to 18 

access and quantify PI. However, most existing EEG indices rely on time-frequency analysis and separate channels, which 19 

limits its clinical application. In this study, we propose a novel quantitative evaluation method by introducing spatial 20 

information from resting-state brain networks of insomniacs to make rapid diagnosis implementable. To suppress false 21 

positive observations of coupling attributed to signal spread, the connections were binarized based on an adaptive threshold 22 

technology so that the statistical network characteristics were extracted automatically to form a comprehensive measurement 23 

index. The clinical experiments proved that the specificity of PI brain networks could be quantified objectively by the 24 

comprehensive index in the resting state. PI specificity showed consistency across the connectivity estimated in time 25 

(Pearson Correlation Coefficient, PCC), phase (Phase Lag Index, PLI) and frequency (Granger Causality, GC) domains. All 26 

the three kinds of connectivity revealed the significant difference between the PI patients and normal subjects (PCC: 27 

p=0.0021, PLI: p=0.0071, GC: p=0.0142). The strong connectivity of PI consistent with clinical rating scale indicates the 28 

hyperarousal of PI brain. It is difficult to achieve normal inhibition, so it consumes more resources in the resting state. An 29 

implication of this finding is that early clinical diagnosis of insomnia may be possible.  30 

 31 

Keywords: Insomnia; EEG; Connectivity; Functional brain network; Causal brain network 32 
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 35 

1. Introduction 36 

At present, about a third of the world population has experienced symptoms of primary insomnia (PI). Approximately 37 

10% to 18% people suffer from insomnia that meets diagnostic criteria. Most of them have difficulties in getting to sleep, 38 

maintaining sleep or returning to sleep, and are often accompanied by the phenomenon of insufficient energy during the day 39 

[1]. 40 

Sleep quality is closely related to human health, life quality and work efficiency. In recent years, there has been growing 41 

recognition of the direct links between many mental illnesses and poor daytime alertness or insomnia. About 42 

pathophysiology, insomnia is associated with cognitive and physiological hyperarousal. A meta-analysis has shown that 43 

insomnia increases the risk of psychopathology arising [2]. The study of the physiological mechanism of insomnia plays a 44 

crucial role in the pathogenesis and diagnosis of mental diseases. 45 

Insomnia was first studied in the 1880s, when its causes were largely understood from aetiology. However, the 46 

aetiological research failed to clarify what "conditioned arousal" was for chronic insomnia. Then, some researchers tried to 47 

explain the causes of chronic insomnia in terms of physical arousal (heart rate, breathing rate, myoelectric, urinary 48 

catecholamine, sympathetic nervous system) and cognitive arousal (excessive meditation) [3]. The extent to which these 49 

different forms of arousal contribute to insomnia remain poorly understood. 50 

Previous works of the spectral correlation suggested that insomniacs might exhibit a third form of arousal: central nervous 51 

system arousal [4, 5]. Finding the right way to explore the brain structure, functional characteristics and internal mechanism 52 

of brain would contribute to the understanding of physiological and pathological mechanisms of primary insomnia. It was 53 

also expected to explain some psychiatric (anxiety, depression, etc.) or neurological (epilepsy, Alzheimer, etc.) symptoms 54 

and mechanisms, eventually benefitting human health. 55 

Recent studies have reported differences in electroencephalogram (EEG) characteristics among insomnia patients with 56 

different clinical manifestations, so as to explain the pathogenesis of some psychiatric diseases with insomnia, or explain 57 

some behaviors (e.g. anxiety in the daytime) and propose appropriate treatment methods [6-8]. EEG has been used to 58 

investigate the relationship between subjective poor sleep quality and objective EEG recordings. Maria Corsi-Cabrera et al. 59 

[9] studied wakefulness EEG activity of PI patients the night before and the morning after they fell asleep, seeking out the 60 

reasons for excessive arousal in the morning and inability to return to sleep. They found the control subjects exhibited 61 

significantly decreased Beta and Gamma power during post-sleep, whereas there was no change from pre-sleep to post-sleep 62 

in the PI group. A large number of studies have also demonstrated that elevated Beta wave activity may be associated with 63 

high cortical arousal in patients, resulting in decreased sleep quality and even insomnia [5]. Spiegelhalder et al. [10] 64 

analyzed the high-frequency EEG power of PI patients in different sleep stages (NREM and REM) and reported their 65 

increased power values in the EEG Beta range during NREM stage 2 sleep but not during REM sleep in comparison to good 66 

sleeper controls. Freedman et al. [11] found absolute EEG Beta power increased during wake, stage 1 and REM sleep but not 67 

during NREM stages 2–4. Perlis et al. [12] described increased Beta power of PI in both REM and NREM sleep. Since 68 

findings in PI sleep are inconsistent, this aspect of increased high frequency power in PI patients remains to be further 69 

elucidated.  70 

As a technological advancement in neuroscience, brain network analysis, measuring connectivity among different brain 71 

regions, can provide richer information about brain function state than simpler univariate approaches [13-16]. Brain network 72 

is a typical complex network, which can be divided into structural brain network, functional brain network and causal brain 73 

network from the perspective of network topology and network dynamics. Among them, structural brain network mainly 74 

reflects the physical structure of the brain, relying on neuroimaging techniques, such as MRI and Diffusion Tensor Imaging 75 

(DTI). Functional brain network reflects the statistical connections among the nodes of different brain areas, and the causal 76 

brain networks represent the information flow and information interaction among the nodes. EEG, Magnetoencephalography 77 

(MEG), fMRI and other imaging modalities enable the construction of functional brain networks and causal brain networks 78 

[17, 18]. Millisecond time resolution of EEG in the brain connectivity has significant advantages, which is helpful to define 79 

the causality of brain connectivity and to provide short time window for information exchange [19].  80 

Recently, the research of functional brain networks has made a lot of progress in insomnia. Killgore et al. [20] tested the 81 

sensorimotor network of patients with sleep disorders and found that difficulty in sleeping was related to the enhanced 82 

functional connections between the primary visual cortex and other sensory regions (such as the primary auditory cortex, 83 
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smell cortex and auxiliary motor areas). Chen et al. [21] studied the internal relationship between significant networks and 84 

emotional regions in insomniacs, and found that functional connections between insula and significant networks were 85 

enhanced in these patients. In addition, enhanced functional connections between insula and emotional circuits (cingulate 86 

cortex, thalamus, and precuneus) were observed in PI [22]. These findings have shown that PI can affect different regional 87 

multi-nerve coordination. Taken together, PI may not only affect local functional systems, but also cause global disorder. 88 

However, the quantitative analysis of whole-brain connectivity is still lacking. In addition, choosing different 89 

connectivity-estimated methods to construct brain networks may get different results. Common methods of connectivity 90 

estimation include temporal correlation, synchronous likelihood estimation and phase-based calculation. Temporal 91 

correlation represents an empirical characterization of the temporal relationship between regions, without indicating how the 92 

temporal covariation is mediated. It is simple, fast and most commonly used measure [23]. Nevertheless, previous studies 93 

have shown that correlation, coherence, amplitude envelope correlation suffer from the primary and secondary leakage. 94 

Therefore, imaginary coherency [24] and Phase Lag Index (PLI) [25] were developed to address the problem. In the 95 

phase-based estimations, the signals are orthogonalized with respect to each other to remove zero-lag mixing prior to 96 

computing the correlation between the amplitudes. These interaction estimations are insensitive to leakage, whereas one 97 

important and frequently overlooked limitation is that spurious interactions may arise as an unwanted by-product of a truly 98 

interacting pair of sources [26]. 99 

With the development of brain network research and the progress of neuroimaging, it has been illustrated that the mutual 100 

influence between each pair of nodes is not completely equal, it may be directional with the flow of information among 101 

network nodes. As a special functional brain network, the causal brain network is generally constructed based on the theory 102 

of causality. It provides a directed network perspective and demonstrates a spontaneous information flow and causal 103 

influence between distinct brain regions, which provides insight into our understanding of the brain functional architecture 104 

[27-29]. Yan et al. [27] found the causality-based functional directed network was stable and reproducible in the young 105 

population. Nonetheless, previous studies did not account for causal interactions among resting-state brain networks in the PI 106 

patients [30]. The resting-state is defined as a baseline state of brain activity when a person is resting quietly but awake 107 

without performing any task [31]. Our hypothesis is that the brain networks of PI patients are different from healthy 108 

individuals in the resting state, which can be evaluated quantitatively. 109 

In this context, we propose an EEG-based quantitative analysis method of PI whole-brain connectivity in the resting state. 110 

In order to demonstrate the versatility and stability of the method, the connectivity is estimated in three domains (i.e. time, 111 

phase, and frequency) to construct functional and causal brain networks. In time domain, the correlation analysis is realized 112 

by Pearson Correlation Coefficient (PCC) between the EEG time-series. In phase domain, the connectivity is measured by 113 

PLI to reduce leakage issue rising up during instantaneous signal spread. In frequency domain, Granger Causality (GC) 114 

based on Partial Directed Coherence (PDC) is calculated to perform causal analysis of EEG to construct directed network. 115 

Then, the connectivity matrices are binarized by an adaptive threshold technology to further remove spurious interactions. It 116 

selects the set of edges that together form the connected graph on which network organization is evaluated by clustering 117 

coefficient, characteristic path length, and global efficiency. These statistical network characteristics constitute a 118 

comprehensive measurement index. Finally, statistical analysis is performed to verify whether the proposed method is able to 119 

distinguish between PI and healthy control and assessed the functional and causal connectivity of PI.  120 

This paper is organized as follows. In Section 2, we describe the experimental details and EEG data preprocessing (see 121 

Section 2.1 and 2.2), illustrate traditional time-frequency analysis of resting-state EEG from PI patients (see Section 2.3), 122 

elaborate the connectivity analysis in time, phase, and frequency domain to construct functional and causal brain networks 123 

(see Section 2.4, 2.5, and 2.6), and discuss the quantification method based on the network characteristics (see Section 2.7 124 

and 2.8). Results of the study are presented in Section 3 and discussed in Section 4. Finally, the paper concludes in Section 5. 125 

 126 

2. Materials and Methods 127 

2.1. Experiments and data 128 

Studies have shown that PI is different from those who also suffer from mental disorder synchronously. It affects 129 

interregional neural coordination of multiple interacting functional brain networks [32]. Therefore, patients with insomnia 130 

symptoms only were selected as the experimental subjects. None of the subjects reported neurological or developmental 131 

disorders.   132 
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This study was reviewed and approved by Ethics Committee, the First Affiliated Hospital of Dalian Medical University. 133 

Written informed consents were obtained from all participants before the experiments. Twenty-eight subjects aged from 20 134 

to 65 years (mean age, 43.86 years) were recruited in the hospital. They were divided into PI and control groups according to 135 

the clinical selection criteria with fourteen subjects (9 females) in each group.  136 

PI was diagnosed by the doctors in the hospital. They ruled out that the insomnia was caused by other disorders, e.g. 137 

mental disorders, based on medical examinations. At the same time, PI fulfilled the following criteria: (1) meet the criteria 138 

for diagnosis of insomnia in Diagnostic and Statistical Manual of mental disorders-fifth edition (DSM-5; American 139 

Psychiatric Association, 2013), (2) a score ≥ 7 on the Pittsburgh Sleep Quality Index (PSQI), (3) a score ≥ 8 on the 140 

Insomnia Severity Index (ISI), (4) do not meet the criteria for diagnosis of mental disorders other than insomnia confirmed 141 

by Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I). Healthy control met the following criteria: (1) have 142 

no complaints of sleep disturbance or daytime symptoms attributable to unsatisfactory sleep; (2) no report of sleep disruption 143 

due to a substance (e.g. drug, alcohol, caffeine, or nicotine) use, abuse, or withdrawal; (3) a score < 5 on PSQI, (4) a score < 144 

8 on ISI, (5) no diagnosis of mental disorders by SCID-I [33]. 145 

  Table 1 shows statistical data and clinical characteristics of all participants (mean value ± standard error). The control and 146 

PI groups reveal no significant differences between group in age (p=0.9369) and education (p=0.1808). The average illness 147 

duration for participants in the PI group is 5.29 years. The patients with PI have significantly higher PSQI and ISI scores 148 

than the controls (p < 0.001). 149 

Participants sat on a comfortable chair during EEG measurement. Sixty standard electrodes (see Fig.1) were attached to 150 

the scalps following the International 10-20 System to collect the resting EEG data of PI and control groups for about 10 151 

minutes. All the subjects were awake without any drowsy feeling report before the experiments. In order to achieve the rapid 152 

evaluation of PI, the first 20-second EEG were selected in data analysis. The EEG sampling frequency was 500Hz. The data 153 

of the two groups were collected in the same periods of the daytime (9:00~12:00 and 13:30~17:00) to exclude the influence 154 

of time factor.  155 

 156 

Table 1. Statistical data and clinical characteristics of all participants. 157 

Parameter Primary insomnia Healthy control p value 

Age (years) 44.00 ± 3.50 43.71 ± 4.95 0.9369 

Gender 9 females, 5 males 9 females, 5 males  

Education (years) 10.00 ± 1.37 13.14 ± 1.75 0.1808 

Illness duration(years) 5.29 ± 1.97   

PSQI 16.10 ± 1.27 3.57 ± 0.61 <0.001 

ISI 21.20 ± 1.80 2.57 ± 0.48 <0.001 

PSQI, Pittsburgh Sleep Quality Index; ISI, Insomnia Severity Index. Means ± standard deviations of age, education, illness duration, PSQI, 158 
and ISI were reported in the original units. With unpaired two-sample t-test, only PSQI and ISI reveal statistical differences (p<0.001) 159 
between the two group. 160 

 161 



5 of 24 

Fig. 1  Distribution of EEG electrodes. Sixty standard electrodes are arranged in accordance with the International 10-20 System to 162 

collect the EEG data. 163 

 164 

2.2. Data preprocessing 165 

In the clinical environment, the raw EEG signals are inevitably interfered by artifacts such as power frequency (50Hz), 166 

muscle movement, and blinking. To reduce the noises preliminarily, the original signals were filtered through a 0.5-50Hz 167 

bandpass filter and 50Hz notch filter.  168 

Since previous studies have demonstrated the high correlation between Beta activity and insomnia [4, 9, 10, 34], the 169 

preprocessed signals were further processed by discrete wavelet transform (DWT) with fourth order Daubechies wavelet and 170 

four level decomposition to obtain the sub-band EEG waves (i.e. Beta) to perform functional brain network analysis. DWT is 171 

an effective method to analyze various components (e.g. approximate and detailed components) of EEG due to its attractive 172 

properties such as good local representation in both time and frequency domain and multi-rate filtering [35]. On the basis of 173 

DWT, the wavelet-based threshold technique in [36-39] was applied to correct the sub-band EEG waves further.  174 

The comparison of the EEG signals before and after preprocessing is shown in Fig. 2. Fig. 2(a) gives a typical 4-second 175 

original EEG signal disturbed by a variety of artifacts. Fig. 2(b) shows Beta waves extracted by wavelet decomposition. The 176 

relatively large fluctuations which may be caused by body movements were apparently eliminated, whereas a few of artifacts 177 

are still left (e.g. the artifacts probably caused by blinks in the red boxes). These artifacts are removed in Fig. 2(c). Compared 178 

to the original signal, the corrected signal in Fig. 2(c) presents more detailed components and retains the main trend. 179 

 180 
Fig. 2.  EEG data preprocessing. (a) Original EEG signal. (b) Extracted Beta waves. DWT with Daubechies wavelet is performed to 181 
obtain the Beta waves. (c) Artifact removal. Wavelet-based threshold technique in [36-39] is utilized to removed the residual artifacts. 182 

 183 

2.3. Time-frequency analysis 184 

Time-frequency analysis has been widely used in the sleep research of the patients with insomnia. Through 185 

time-frequency analysis, the frequency components of EEG in each time period can be intuitively compared between normal 186 

and patient groups, which is conducive to subsequent analysis. Short-time Fourier transform and wavelet transform are two 187 

common algorithms in the time-frequency analysis [40]. Since wavelet transform has the advantage of good local 188 

representation in both time and frequency domains compared to Fourier transform, it is more adapted to the time-frequency 189 

analysis of non-stationary signals. Wavelet transform was adopted in time-frequency analysis.  190 

For a time series x(t) with length T (t=0, 1, 2, ..., T-1), wavelet coefficient at time t0 is estimated by the formula 191 

1
0

0

0

1
( , ) ( ) ( )

T

x

t

t t
WT a t x t

aa


−

=

−
= 

,

 (1) 

where a and t0 represent scaling and shifting parameters, respectively. ψ denotes mother wavelet. In this study, the 192 

common-used Morlet wavelet was employed as mother wavelet [40]. Morlet wavelet is defined as 193 
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where σ and fc are the bandwidth and center frequency of Morlet wavelet. It follows Gaussian distribution in time and 194 

frequency domain around fc. Scaling parameter a is correlated with frequency f. 195 

s cf f
f

a


=  (3) 

where fs is the sampling frequency of x(t). The wavelet time-frequency (WTF) spectrum WT(t, f) can be obtained through 196 

Eqs. (1)-(3). The preprocessed signals with the frequency range of 0.5-50Hz was used as the input time series x(t). |WT(t, f)|2 197 

represent the power values of EEG data varying with time t and frequency f.  198 

 199 

2.4. Connectivity Estimation Based on Pearson Correlation Coefficient 200 

According to graph theory, a brain network can be represented by a graph G(N, E) where N and E are the node and edge 201 

(or link) sets. We assigned EEG electrodes to the nodes of the brain networks. The adjacency relations among the nodes in 202 

the networks can be described by the adjacency matrix A whose element A(i, j) shows the measured edge between electrodes 203 

(nodes) i and j. Since the EEG electrodes are distributed in different brain regions, the edges embody functional connectivity 204 

among these brain regions. As mentioned above, different connectivity-estimated methods may affect the the quantitative 205 

analysis of whole-brain connectivity. Thus, PCC, PLI, GC and PDC were used to estimate the connectivity so that the 206 

quantitative analysis had a certain generalization ability. 207 

In time domain, a simple and commonly used measure of the functional connectivity is the correlation coefficien [23]. If 208 

x(t) and y(t) are the EEG time series from nodes i and j, the correlation between them can be expressed as
 

209 
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,                                  (4) 210 

where rij is Pearson correlation coefficient. xk and yk correspond to the signal amplitudes at kth moment. n is the sample 211 

number of x(t) and y(t). The correlation coefficient is the covariance of the two samples divided by the multiplication of the 212 

standard deviation. Covariance reflects the relevancy between two random variables. If a variable varies with another 213 

variable at the same time, then the covariance of the two variables is positive, otherwise the covariance is negative. 214 

Nevertheless, if the points are distributed discretely, covariance value may be large, which is difficult to reflect the reality 215 

relevancy of the two variables, as relevancy is also related to the dispersion of the variables themselves. PCC is provided to 216 

solve this problem. An important mathematical characteristic of PCC is that changes in the position and scale of the two 217 

variables will not cause the coefficient to change. 218 

Here, the extracted Beta waves were taken as the time-varying signals. For rapid assessment of PI in the resting state, we 219 

employed a sliding window with the length to be one second to analyze Beta oscillation data within 20 seconds. In the 220 

sliding window, the correlation coefficient between two channel Beta waves was considered as the element of the adjacency 221 

matrix to construct the brain networks. 222 

 223 

2.5. Connectivity Estimation Based on Phase Lag Index 224 

PLI reflects the consistency of the phase lead or lag of two leads from the perspective of phase. The PLI value between 225 

EEG signals from nodes i and j can be calculated by the following equation 226 

[ ( )]ij kPLI sign t=  ,                                   (5) 227 

where ( )kt  is the instantaneous phase difference between the two leads at the moment k. sign denotes a symbolic 228 

function. ＜·＞ refers to averaging in the time domain. When ( ) 0kt  , [ ( )]=1ksign t . It means that the phase of 229 
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the two leads is synchronous. If ( ) 0kt  , [ ( )]=-1ksign t . It reveals that the phase of the two leads is out of 230 

synchronization. Thus, PLI values lie in the range from 0 to 1. The larger the PLI values are, the stronger the phase coupling 231 

is. 232 

 233 

2.6. Connectivity Estimation Based on Granger Causality 234 

Different from the previous two methods, in this section, we constructed causal brain networks using GC to supplement 235 

the brain networks. In the causal brain networks, the connections between nodes are directional, reflecting the direction of 236 

the information flow. GC model does not require a priori assumption of the interactions between brain regions. Its concept is 237 

proposed by Wiener. Its algorithm is realized by Granger through the linear regression model of random process [41]. 238 

GC is based on predictability and precedence. Simply put, Granger causality is a vector-valued stochastic process that 239 

assumes two vectors such as 1 2, , nX X X X=  and 1 2, , mY Y Y Y=  have common distributions. If Y depends not 240 

only on its past but also on the past of X, i.e. the past of X contains information that can help predict the future of Y, then we 241 

can say that Y G-causes X or X is a cause of Y, and the two vectors have a causal relationship [42]. 242 

Since GC model requires the data to be covariance-stationary, whether Granger causality is adapted to the brain network 243 

analysis needs to be tested. Hence, we calculated autocorrelation function of the preprocessed EEG time series. As shown in 244 

Fig. 3, the autocorrelation function first rises, then falls, and finally converges to 0. It conforms to the law that a stationary 245 

time series generally fluctuates around its mean. Further, Augmented Dickey Fuller (ADF) test was utilized to confirm the 246 

stationarity of the preprocessed EEG. ADF test results showed that the current data had no unit root. It rejected the null 247 

hypothesis (unit root existed), so the preprocessed EEG was considered to be covariance stationary. 248 

 249 
Fig. 3. Self-correlation test. The autocorrelation function of the preprocessed EEG data fluctuates around 0 and finally converges to 0. 250 

 251 

Finally, based on Multivariate Autoregressive (MVAR) Model and PDC analysis, Granger causality was successfully 252 

applied to the analysis of brain networks. The PDC based on MVAR model quantified the direct causality among nodes, 253 

effectively avoiding pseudo causality [43]. 254 

Consider the EEG signals of N channels at time t 255 

1 2[ , , , , , ]T

t t t it NtU U U U U=                                   (6) 256 

where itU  represents the time series of the channel i. The pth MVAR model can be expressed as 257 

1

( ) ( )
p

t t k

k

U A k U E t−

=

= +                                      (7) 258 

where A(k) denotes the model coefficient matrix of N by N. E(t) stands for random noise. The key parameter of MVAR 259 

model is the order p. It represents that the sequence at the current moment t is related to the sequence values at the p previous 260 

moments, or p past moments of the sequence predict the sequence of the current moment t. In this work, A(k) was calculated 261 

with the GCCA (Granger Causal Connectivity Analysis) Toolbox [42]. p was determined by Akaike Information Criterion 262 

(AIC) and Bayesian Information Criterion (BIC). 263 

Based on the MVAR model, PDC is one of the methods to find the Granger causality between any two channels at 264 

different frequencies [44]. In PDC, the coefficient matrix A(k) of MVAR model was transformed as 265 
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where f represents the frequency. 267 

Then, the element of ( )A f
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                           (9) 269 

At frequency f, the element of PDC in row i and column j is defined as 270 

,

, ,

( )
( ) ( )

( ) ( )

i j

i j i j
T T

j j

A f
PDC f f

a f a f

= =                             (10) 271 

where ( )ja f  is the jth column of , ( )i jA f  (j = 1, 2, …, N). The average value of the PDCij(f) is obtained by 272 

,

,

( )i j
f

i j

f
PDC

f


=




                                    (11) 273 

where f  is the Beta band range of 13-30Hz. ,i jPDC  denotes the direction and intensity of the information flow from 274 

channel j to channel i.  275 

 276 

2.7. Binarization of adjacency matrix 277 

In order to facilitate the feature extraction of the brain networks, the adjacency matrix was binarized based on an adaptive 278 

threshold technology. First, the diagonal elements of the adjacency matrix were set to zero to exclude self-connections of 279 

nodes. If the element ai,j of adjacency matrix exceeded a threshold T, it was set to 1, and to 0 otherwise. For the binarized 280 

adjacency matrix A, its element is expressed as 281 

,

,

1,   ( ),

0,   otherwise.             

i j

i j

i j T w
a

  
= 


                               (12) 282 

where T(w) represents the threshold in every window w. ai,j denotes the ith row and jth column element of A . ρi,j is the 283 

correlation value estimated from Sections 2.4, 2.5 or 2.6. 284 

 Since the threshold defines the topology of the network, it is important to choose a proper threshold. In order to 285 

characterize the dynamics of global network, the highest possible threshold was selected for each time window to reduce the 286 

randomness of the network and avoid the appearance of isolated nodes. Starting from a threshold T(w)=1, we gradually 287 

reduced the threshold. At each step, the second smallest eigenvalue λmin of the corresponding Laplace matrix was computed. 288 

When the eigenvalue was greater than zero, the threshold T(w) was determined to implement binarization so that the 289 

established network belongs to the connected graph [45]. According to [46], λmin is positive if and only if the graph is 290 

connected. Laplace matrix L can be calculated by the following equation 291 

, , ,-i j i i j i jL k a=                                        (13) 292 

where ki denotes the degree of ith node. δi,j is the Kronecker delta. 293 

,

0,   

1,   
i j

i j

i j



= 

=
                                      (14) 294 

 295 

2.8. Quantification and evaluation of brain network characteristics 296 
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To evaluate the characteristics of PI brain network, the clustering coefficient, characteristic path length, and global 297 

efficiency were integrated to form a comprehensive index.  298 

The clustering coefficient of a node, Ci, is the ratio of the number of links that exist between the nearest neighbors of the 299 

chosen node and the number of possible links between them [15]. A large clustering coefficient means high local functional 300 

overlap of densely connected neighborhood elements. The equation of clustering coefficient can be expressed as 301 

( 1) / 2

i
i

i i

E
C

k k
=

−
                                      (15) 302 

where Ei represents the number of edges connected between adjacent nodes of node i. ki denotes the number of links between 303 

node i and all its neighboring nodes. The clustering coefficient of a network, C, is the average over the clustering coefficients 304 

of all nodes. By definition, the clustering coefficient values lies in the range from 0 to 1. 305 

The characteristic path length L refers to the average value of the shortest path between all the node pairs. The shortest 306 

path length d(i, j) is defined as the minimum number of links that must be traversed to go from node i to node j. Therefore, 307 

d(i, j)≥1. d(i, j)=1 if i and j are neighbors, whereas d(i, j)→∞ if the nodes are disconnected. It refects the functional 308 

dispersion of the node pairs in the network. The characteristic path length L was computed as below 309 

1
( , )

( 1) i j V

L d i j
N N  

=
−

                                   (16) 310 

where d(i, j) is the shortest path length. N denotes the number of all nodes in the network. V stands for the set of all nodes. 311 

Small characteristic path length L implies stronger potential for integration and higher information transmission efficiency. 312 

Assuming a parallel information flux, the communication efficiency between two nodes is inversely proportional to the 313 

shortest path length. The efficiency of a set of nodes is the sum of the efficiencies of all node pairs, normalized by maximal 314 

number of links N(N − 1)/2. When the node set (V) contains all nodes, the efficiency obtained from Eq. (17) is viewed as the 315 

global efficiency 316 

global

1 1

( 1) ( , )i j V

E
N N d i j 

=
−

                                 (17) 317 

where d(i, j) is the shortest path between the ith node and the jth node. N denotes the number of all nodes in the network. V 318 

stands for the set of all nodes.  319 

Many recent studies have certificated that there exhibits "small-world" behavior in different scales of brain networks 320 

[47-49]. The "small-world" network has bigger clustering coefficient and smaller characteristic path length compared to a 321 

random network. Our hypothesis is that PI can cause the change of resting-state brain networks. Thus, it may be reflected in 322 

"small-world" related features.  323 

Here, considering that global efficiency is inversely proportional to characteristic path length, the ratio of the product of 324 

global efficiency and clustering coefficient to characteristic path length is taken as the comprehensive index of network 325 

characteristics.  326 

global ( ) ( )
( )

( )

E w C w
w

L w



=                                   (18) 327 

where Eglobal(w), C(w), and L(w) represent global efficiency, clustering coefficient, and characteristic path length in 328 

sliding window w. Large comprehensive index η implies strong "small-world" attributes. 329 

2.9. Classification based on brain network characteristics 330 

The classification of healthy status (normal or PI) about sleep was performed using a machine learning method of 331 

bidirectional long short-term memory (Bi-LSTM) network (see method details in [50]). 332 

The LSTM structural properties of sharing weights based on gate mechanism allow it to learn the timing characteristics of 333 

the data, facilitating long-term memory. Compared to the classical unidirectional LSTM, the Bi-LSTM can capture the 334 

dynamic information from both earlier and later segments in EEG sequence [51].  335 

As shown in Fig. 4, the classifier consists of four layers. The first layer takes the brain network characteristics as input. 336 

The second is the LSTM layer, which learn the long-term dependencies and compensate for the vanishing gradient. The third 337 

is a fully connected layer, which is used to integrate the features extracted by the LSTM layer. It is a linear combination of 338 

the output of all LSTM units during the last time step. The function of this layer combines different feature-dynamic 339 
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information learned from each LSTM unit. The output of this layer is set as the input of softmax function to predict the 340 

healthy status (normal or PI). The fourth is the output layer, producing the recognized healthy status category.  341 

 342 

 343 
Fig. 4. Architecture of the Bi-LSTM classifier. The inputs of the classifier are the brain network characteristics. The output of the classifier 344 
is the healthy status category (normal or PI) about sleep. 345 

 346 

In this paper, the brain network characteristics of each subject were estimated under three connectivity conditions (PCC, 347 

PLI, and GC) and the estimation was implemented in the resting state EEG of 20 seconds. Thus, the data of each subject is 348 

represented by a matrix of 3×20. The dataset of all subjects are set as the input of the Bi-LSTM classifier. It was divided into 349 

the training set and test set. Their ratio was 4:3.  350 

To verify the evaluation effect of the brain network characteristics and expand the test set, the EEG of four additional 351 

subjects was collected. The data acquisition condition was the same as that in Section 2.1. All the four subjects are females. 352 

Two of the subjects are PI patients (age: 52 and 34, illness duration: 10 and 5 years). The other two subjects are normal 353 

individuals (age: 57 and 31). Their network characteristics were used for testing. Therefore, the test set was updated. It had 354 

960 samples and accounted for 50%. The train set had 960 samples and accounted for 50%. 355 

 356 

3. Results 357 

3.1. Time-frequency analysis 358 

Figs. 5 and 6 show the WTF diagrams of a healthy control and a PI patient respectively. Their display range is 0-50Hz. 359 

The Beta oscillation activities can be observed in both the WTF diagrams of the healthy control and PI patient. The 360 

distribution of Beta oscillations is different in the frontal and posterior regions. The PI’s activation phenomenon around 361 

20Hz in the posterior regions is more obvious. Hence, the power in Beta band was calculated and further statistical analysis 362 

of all subjects was performed.  363 

 364 
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Fig. 5. Results of time frequency analysis for a healthy control. Electrodes F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, O1, Oz, and O2 distributed 365 
in the whole brain are selected to demonstrate the WTF diagrams. Color bar indicates WTF power. Beta activity around 20Hz is relatively 366 
active throughout the entire brain. 367 

 368 

Fig. 6. Results of time frequency analysis for a PI patient. Electrodes F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, O1, Oz, and O2 distributed in the 369 
whole brain are selected to demonstrate the WTF diagrams. Color bar indicates WTF power. Beta activity around 20Hz is relatively active 370 
throughout the entire brain. 371 

 372 

Fig. 7 shows the brain topographies of Beta power. The occipital area of the PI patient is active. Compared to the healthy 373 

control, the Beta power of PI in occipital area is higher. It reveals the difference in the topographical distribution. Thus, the 374 

following statistical analysis for all the subjects was performed on the electrodes in different brain regions. 375 

 376 

 377 
Fig. 7. Brain topographies of Beta power. (a) Brain topography of a healthy control. (b) Brain topography of a PI patient. All the sixty 378 
electrodes in Fig. 1 are used to demonstrate the topographies. The WTF power is converted to relative power by subtracting the average 379 
power of all the channels so that the image is centred around zero. Color bar indicates the relative power. 380 

 381 

Fig. 8 shows the power in Beta band of the two groups. There are differences of Beta power averages between the two 382 

groups, but the differences only reflect in some frontal and posterior channels. The Beta power averages of the PI group in 383 

the specific channels are higher than those of the healthy control group.  384 

Then, mixed two-way ANOVA was performed for Beta power with groups as the independent variable and derivations 385 

(frontal and posterior channels) as the within-subjects variables. As shown in Table 2, there is no significant difference of 386 

Beta power between the control and patient groups in frontal and posterior regions. It reveals large deviation among the 387 

subjects during resting state. 388 

 389 

(a)                         (b) 

      

 

Fig. 6.  Brain topographies of Beta power. (a) Brain topography of a healthy control. (b) 

Brain topography of a PI patient. 
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 390 

Fig. 8. Beta absolute power of normal group and patient group. The x-axis represents channel. The y-axis refers to the absolute power 391 

obtained by WTF where the frequency range corresponds to Beta band. The error bars are given in the form of mean ± standard deviation. 392 

393 
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 394 

Table 2. ANOVA analysis: insignificant differences in Beta absolute power. 395 

 

Group Derivation Group by Derivation 

F p F p F p 

Frontal regions 1.07 0.3024 0.23 0.9474 0.11 0.9892 

Posterior regions 0.55 0.4594 0.74 0.5957 0.18 0.9696 

Mixed GroupDerivation ANOVAs. Group: insomnia and control group; Derivation: channels; Frontal regions: Fp1, Fpz, Fp2, F3, Fz, 396 
and F4; Posterior regions: P3, Pz, P4, O1, Oz, and O2. The absolute power is obtained by WTF where the frequency range corresponds to 397 
Beta band. 398 

 399 

3.2. Evaluation of functional brain Networks based on PCC 400 

Fig. 9 shows the brain networks constructed by PCC during the resting state of 20 seconds. The number of connections for 401 

each network is indicated by the color within the color bar. Compared to the brain networks of healthy control (Fig. 9(a)), the 402 

most PI’s networks have more links (Fig. 9(b)). The topological structure of the PI’s networks is different from the healthy 403 

control. Additionally, the structure of the PI’s networks is relatively stable throughout the 20-second resting process. 404 

 405 
(a) 

 

(b) 

 
Fig. 9. Brain networks constructed by PCC in the resting state. (a) Healthy control. (b) PI patient. Color bar indicates link number. The 406 
EEG electrodes are assigned to the nodes of the brain networks. The connectivity is estimated by PCC and is binarized based on the 407 
adaptive threshold technology in Sec. 2.7. If there is a link between two nodes, it means the PCC value exceeds the threshold T. 408 

 409 

Fig. 10 shows the statistical analysis results of characteristics of brain networks constructed by PCC. The blue and red 410 

lines represent the healthy control and PI groups respectively. The characteristic path length presents more obvious 411 

differentiation degree between groups (Fig. 10(b)), compared to the other two original network characteristics (Figs. 10(a) 412 

and (c)). Most the averages of characteristic path length of PI group are smaller than those of healthy control group. Through 413 

unpaired two-sample t-test, it reveals statistically significant differences of characteristic path length (p=0.0015) and 414 

insignificant differences of clustering coefficient (p=0.3938) and global efficiency (p=0.7042) between groups. It indicates 415 

that the characteristic path length of PI group is significantly shorter than that of healthy control group under the condition of 416 

PCC connectivity (p<0.01).  417 

 418 
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 419 
Fig. 10. Characteristics of brain networks constructed by PCC in the resting state. (a) Clustering coefficient. (b) Characteristic path length. 420 
(c) Global efficiency. (d) Comprehensive index. Clustering coefficient C, characteristic path length L, global efficiency Eglobal, and 421 
comprehensive index η are calculated by Eqs. (15)-(18) respectively. Their averages and standard errors are plotted. The error bars are 422 
given in the form of mean ± standard deviation.  423 

 424 

Fig. 10(d) shows the proposed comprehensive index of network characteristics under the condition of PCC connectivity. 425 

The differentiation degree between groups is approximate to characteristic path length in Fig. 10(b). Most the comprehensive 426 

index averages of PI group are larger than those of healthy control group. Through unpaired two-sample t-test, it reveals 427 

statistically significant differences of comprehensive indices (p=0.0021) between groups. It indicates that the comprehensive 428 

index of PI group is significantly bigger than that of healthy control group under the condition of PCC connectivity (p<0.01). 429 

 430 

3.3. Evaluation of functional brain Networks based on PLI 431 

Fig. 11 shows Brain networks constructed by PLI during the resting state of 20 seconds. The PLI networks have wider 432 

range of link number variation than PCC networks. Compared to the healthy control (Fig. 11(a)), the PI patient has more 433 

dense connectivity in phase domain (Fig. 11(b)). There are also visual differences of topological structure in some networks, 434 

e.g. the 18th and 19th networks between the healthy control and PI patient.  435 
(a) 

 

(b) 

 

Fig. 11. Brain networks constructed by PLI in the resting state. (a) Healthy control. (b) PI patient. Color bar indicates link number. The 436 
EEG electrodes were assigned to the nodes of the brain networks. The connectivity was estimated by PLI and was binarized based on the 437 
adaptive threshold technology in Sec. 2.7. If there is a link between two nodes, it means the PLI value exceeds the threshold T. 438 

 439 

Fig. 12 shows the statistical analysis results of characteristics of brain networks constructed by PLI. The blue and red lines 440 

represent the healthy control and PI groups respectively. The clustering coefficient (Fig. 12(a)) and global efficiency (Fig. 441 
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12(c)) present more obvious differentiation degree between groups in the original network characteristics (Figs. 12(a)-(c)). 442 

Most the averages of clustering coefficient and global efficiency of PI group are larger than those of healthy control group. 443 

Through unpaired two-sample t-test, it reveals statistically significant differences of clustering coefficient (p=0.0039) and 444 

global efficiency (p=0.0250) and insignificant differences of characteristic path length (p=0.0722) between groups. It 445 

indicates that the clustering coefficient (p<0.01) and global efficiency (p<0.05) of PI group are significantly larger than that 446 

of healthy control group under the condition of PLI connectivity.  447 

 448 

 449 
Fig. 12. Characteristics of brain networks constructed by PLI in the resting state. (a) Clustering coefficient. (b) Characteristic path length. 450 
(c) Global efficiency. (d) Comprehensive index. Clustering coefficient C, characteristic path length L, global efficiency Eglobal, and 451 
comprehensive index η are calculated by Eqs. (15)-(18) respectively. Their averages and standard errors are plotted. The error bars are 452 
given in the form of mean ± standard deviation. 453 

 454 

Fig. 12(d) shows the proposed comprehensive index of network characteristics under the condition of PLI connectivity. 455 

The differentiation degree between groups is better than global efficiency in Fig. 12(c). Most the comprehensive index 456 

averages of PI group are larger than those of healthy control group. Through unpaired two-sample t-test, it reveals 457 

statistically significant differences of comprehensive indices (p=0.0071) between groups. It indicates that the comprehensive 458 

index of PI group is significantly bigger than that of healthy control group under the condition of PLI connectivity (p<0.01). 459 

 460 

3.4. Evaluation of functional brain Networks based on GC 461 

Fig. 13 shows Brain networks constructed by GC during the resting state of 20 seconds. Even though there are some 462 

fluctuations (e.g. the 1st, 7th, and 20th networks), most networks of the PI patient (Fig. 13(b)) also has more links than 463 

healthy control (Fig. 13(a)). Under the GC condition, the connectivity generally becomes denser.  464 

 465 
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(a) 

 

(b) 

 
Fig. 13. Brain networks constructed by GC in the resting state. (a) Healthy control. (b) PI patient. Color bar indicates link number. The 466 
EEG electrodes were assigned to the nodes of the brain networks. The connectivity was estimated by GC and was binarized based on the 467 
adaptive threshold technology in Sec. 2.7. If there is a link between two nodes, it means the GC value exceeds the threshold T. 468 

 469 

Fig. 14 shows the statistical analysis results of characteristics of brain networks constructed by GC. The blue and red lines 470 

represent the healthy control and PI groups respectively. All the characteristics present differentiation between groups. Most 471 

the averages of clustering coefficient and global efficiency of PI group are larger than those of healthy control group. On the 472 

contrary, most the averages of characteristic path length of PI group are shorter. Through unpaired two-sample t-test, it 473 

reveals statistically significant differences of clustering coefficient (p=0.0264), characteristic path length (p=0.0048), and 474 

global efficiency (p=0.0077) between groups.  475 

 476 

 477 
Fig. 14. Characteristics of brain networks constructed by GC in the resting state. (a) Clustering coefficient. (b) Characteristic path length. 478 
(c) Global efficiency. (d) Comprehensive index. Clustering coefficient C, characteristic path length L, global efficiency Eglobal, and 479 
comprehensive index η are calculated by Eqs. (15)-(18) respectively. Their averages and standard errors are plotted. The error bars are 480 
given in the form of mean ± standard deviation. 481 

 482 

Fig. 14(d) shows the proposed comprehensive index of network characteristics under the condition of GC connectivity. 483 

The differentiation degree between groups is approximate to characteristic path length and global efficiency in Figs. 14(b) 484 

and (c). Most the comprehensive index averages of PI group are larger than those of healthy control group. Through 485 

unpaired two-sample t-test, it reveals statistically significant differences of comprehensive indices (p=0.0142) between 486 

groups. It indicates that the comprehensive index of PI group is significantly larger than that of healthy control group under 487 

the condition of PLI connectivity (p<0.05). 488 
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The comparison of the above network evaluation methods is presented in Table 3. Compared to the original network 489 

characteristics, the proposed comprehensive index can effectively distinguish PI and healthy control, no matter which 490 

connectivity estimation method was used. For the original network characteristics, the results of statistical analysis are 491 

different choosing different connectivity-estimated methods to construct brain networks. All of these network characteristics 492 

reveal significant differences between groups only when the connectivity was estimated by GC. It illustrates that it helps to 493 

improve the consistency of results when considering information flow based on the theory of causality.  494 

 495 

Table 3.  Brain network characteristics. 496 

 Clustering 

Coefficient 

Characteristic Path 

Length 

Global Efficiency Proposed Index 

PCC 0.3938 0.0015 0.7042 0.0021 

PLI 0.0039 0.0722 0.0250 0.0071 

GC 0.0264 0.0048 0.0077 0.0142 

Unpaired two-sample t-test is performed to compare the evaluation effects of different brain networks. p value in bold indicates significant 497 
difference between groups. 498 

3.5. Classification based on brain network characteristics 499 

Figs. 15 and 16 show the differences results of independent test set of four additional subjects. The number of connections 500 

for each network is indicated by the color within the color bar. As shown in Fig 15, the most PI’s networks still have more 501 

links than the normal networks during the resting state of 20 seconds. The topological structure of the PI’s networks is 502 

different from the healthy control. The dynamic regional blocks in Fig. 15 (a) are not observed in the PI’s networks.  503 

 504 
(a) 

 

(b) 

 
Fig. 15. Brain networks constructed by PCC in independent test set. (a) Normal individual. (b) PI patient. Color bar indicates link number. 505 
The EEG electrodes are assigned to the nodes of the brain networks. The connectivity is estimated by PCC and is binarized based on the 506 
adaptive threshold technology in Sec. 2.7. If there is a link between two nodes, it means the PCC value exceeds the threshold T. 507 
 508 

Fig. 16 shows the characteristics of brain networks constructed by PCC. The blue and red lines represent the healthy and 509 

PI subjects respectively. They are distributed around different baselines. As shown in Fig. 16(d), the most points on the 510 

curves of the PI comprehensive index are above those of healthy subjects. It verifies that the comprehensive index of PI is 511 

bigger than that of healthy individual with fluctuations.  512 

 513 
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 514 
Fig. 16. Characteristics of brain networks constructed by PCC in independent test set. (a) Clustering coefficient. (b) Characteristic path 515 
length. (c) Global efficiency. (d) Comprehensive index. Clustering coefficient C, characteristic path length L, global efficiency Eglobal, and 516 
comprehensive index η are calculated by Eqs. (15)-(18) respectively. Their averages and standard errors are plotted. The error bars are 517 
given in the form of mean ± standard deviation.  518 

 519 

The classification accuracy of the different network characteristics in the whole test set is presented in Table 4. It can be 520 

seen that the proposed comprehensive index achieves the best results. The accuracy and sensitivity of the proposed 521 

comprehensive index outperform the original network characteristics. 522 

 523 

Table 4.  Bi-LSTM classification results. 524 

 Clustering 

Coefficient 

Characteristic Path 

Length 

Global Efficiency Proposed Index 

Accuracy (%) 35 80 60 85 

Sensitivity (%) 40 80 20 90 

Specificity (%) 30 80 100 80 

 525 

The classification confusion matrices intuitively reflect the classification performance of the model for different classes of 526 

healthy status. Fig. 17 shows the confusion matrices in the whole test set trained by the different network characteristics. 527 

True label represents the actual healthy status. Predicted label represents the predicted healthy status of the classifier. 528 

Percentage indicates the output label ratio. Hence, the diagonal and non-diagonal lines respectively represent the 529 

classification accuracy and misclassification ratios of each status. The proposed comprehensive index has a high accuracy 530 

for two classes of healthy status (normal and PI), reaching 80% and 90%, respectively. 531 

 532 

 533 



19 of 24 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
Fig. 17. Confusion matrices of classification in the whole test set. (a) Clustering coefficient. (b) Characteristic path length. (c) Global 534 
efficiency. (d) Comprehensive index. Clustering coefficient C, characteristic path length L, global efficiency Eglobal, and comprehensive 535 
index η are calculated by Eqs. (15)-(18) respectively. True label represents the actual healthy status. Predicted label represents the 536 
predicted healthy status of the classifier. Percentage indicates the output label ratio. 537 

 538 

 539 

4. Discussion 540 

According to some researchers, insomnia is closely related to high frequency power. The elevated Beta wave activity has 541 

been reported to be associated with high cortical arousal in PI patients [10, 11, 52, 53]. However, these studies focused on 542 

the EEG analysis of sleep stage. As argued by Corsi-Cabrera et al. [9], PI arousal effect also correlates with acquisition time 543 

and other factors. In this study, we did not get the result that the Beta power of PI was significantly higher than that of 544 

healthy control in the resting-state based on the traditional time-frequency analysis (see Fig. 8 and Table 2). From the 545 

perspective of isolated EEG activity in each brain area, the reason may be that the EEG data in this paper were all from the 546 

awake moment, and the brain was dominated by high frequency EEG activities such as Beta wave during this moment, 547 

which may lead to less obvious differences between the two groups. Although Beta power averages of the PI group in the 548 

specific channels are higher than those of the healthy control group (see Fig. 8) and the topographical distribution is different 549 

(see Fig. 7), no significant difference is revealed between group in the specific channels and localized sub-regions (frontal 550 

and posterior regions). Hence, PI may cause global disorder rather than just affecting local functional systems. Since the PI 551 

patients are often accompanied by the phenomenon of insufficient energy during the day [1], we believe the information of 552 

arousal effect is still involved in the PI group, but the time-frequency analysis implemented in each channel is not enough to 553 

reveal it. To extract and quantify the arousal features of PI, the connectivity was further estimated considering spatial 554 

interaction information. 555 

Based on graph theory, PCC, PLI and GC were used to construct functional brain networks. They reflect spatial 556 

interaction information of different dimensions. As mentioned above, PCC represents an empirical characterization of the 557 

temporal relationship between regions. PLI is calculated from the asymmetry of the distribution of instantaneous signal 558 

phase differences between regions. GC embodies a spontaneous information flow and causal influence between regions. As 559 

shown in Figs. 9, 11, and 13, the brain networks of the PI and healthy individuals present differences of density and topology 560 

of connections under the three connectivity estimation methods. Overall, the PI networks have the denser links and their 561 

connectivity is stronger. Additionally, this visualized feature is relatively stable during the 20s resting state. Thus, these 562 

results are more reliable. They do not depend on the connectivity estimation methods.  563 
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The "small-world" measurements allow one to assess the robustness of topological features of the brain after undergoing 564 

trait- or state-like changes [53]. The common measures are clustering coefficient, characteristic path length, and global 565 

efficiency. In order to implement them and express the topology clearly, the networks need to be binarized. Only those 566 

elements of the adjacency matrix above a threshold indicate the existence of a connection between each pair of electrodes 567 

[14]. Obviously, the larger the threshold, the fewer the number of network connections and the fewer spurious edges. 568 

Nevertheless, when the threshold is too lager, isolated nodes will appear. There is no path to reach these nodes. The 569 

characteristic path length will be infinite. Therefore, choosing a reasonable threshold is crucial. In the this study, an adaptive 570 

threshold technology was introduced to conduct the binarization of brain networks. The threshold it determines is the 571 

maximum which makes the binarized networks belong to the connected graph. This minimize the number of spurious links 572 

while preventing the appearance of isolated nodes. Since the threshold is automatically determined, the data-driven method 573 

avoids the subjectivity and arbitrariness in manually selecting the threshold and facilitates the subsequent comparison of 574 

different network characteristics.  575 

To quantitatively evaluate the global connectivity, the comprehensive index of network characteristics was calculated and 576 

compared with the original network characteristics. As shown in Figs. 10, 12, and 14, the proposed comprehensive index can 577 

distinguish between healthy control and PI groups, no matter which connectivity estimation method is used. The statistical 578 

analysis results revealed significant differences between groups under PCC (p=0.0021), PLI (p=0.0071), and GC (p=0.0142) 579 

conditions. In contrast, the results of the original network characteristics did not present statistical significance under every 580 

connectivity estimation condition, which might influence the result interpretation. Hence, the proposed comprehensive index 581 

has stronger generalization ability than the original network characteristics themselves.  582 

The significantly larger comprehensive index of PI groups indicates strong "small-world" attributes of networks. It has 583 

bigger clustering coefficient, higher global efficiency, or shorter characteristic path length. It is believed that the 584 

small-worldness reflects the brain’s ability to efficiently integrate information [14]. Small world network is known as a 585 

network with high efficiency and low cost simultaneously. It has been proven that brain has a structure of small-worldness 586 

network, which makes it efficient in speedy information transmission [54]. The loss of "small-world" characteristics occur 587 

under conditions of reduced consciousness [55] and brain disorder like Alzheimer's disease [56-58]. Correspondingly, this 588 

paper shows that too strong "small-world" characteristics is also harmful and related to brain disorder. Obviously, the 589 

stronger "small-world" characteristics of PI do not represent the stronger brain’s ability than healthy control, but bring 590 

over-connectivity (see Figs. 9, 11, and 13). All the participants of PI group are recruited in the hospital. As recorded by PSQI 591 

and ISI, they are suffering from sleep disorders. Therefore, from another perspective, the results imply that the speedy 592 

information transmission of over-connectivity consumes more resources in the resting state. The brain with PI is difficult to 593 

achieve normal inhibition. This may be the cause of sleep disorders. Another asset that this paper brings is that the 594 

resting-state analysis is performed for the 20-second EEG. It exhibits a potential for rapid diagnosis in clinical practice. The 595 

network characteristics were input the Bi-LSTM classifier to judge the healthy status of a new subject automatically. As 596 

shown in Table 4 and Fig. 17, the classification accuracy of the proposed comprehensive index outperforms the original 597 

network characteristics. It is consistent with the evaluation performance of the proposed index. The PI patients’ index is 598 

higher than health controls with statistical significance (p<0.05). The proposed comprehensive index has a high accuracy for 599 

two classes of healthy status (normal and PI), reaching 80% and 90%, respectively. The sensitivity is also 90%. It indicates 600 

the missed diagnosis rate is relatively low. Compared with the original network characteristics, the proposed index is more 601 

sensitive to PI information. The future work will focus on exploration of relevant large scale datasets and optimized deep 602 

learning model to realize more accurate and reliable diagnosis and judgment for the state of disease progression. 603 

 604 

5. Conclusion 605 

In this paper, we presented a EEG-based quantitative analysis method of whole-brain connectivity in the resting state. 606 

With the network establishment, adaptive threshold technology and comprehensive index, it was proved that the 607 

hyperarousal information of PI could be mined not only in the sleep stages, but also in the resting state. The comprehensive 608 

index showed more versatility and stability performance than the original network characteristics under the connectivity 609 

estimations from different dimensions (PCC, PLI, and GC). The "small-world" features of PI were significantly stronger than 610 

healthy control, consistent with the arousal effect found by the previous studies during sleep. The characterization and 611 

quantization of over-connectivity in the 20s resting state is helpful for PI rapid diagnosis. 612 



21 of 24 

 613 

Acknowledgments 614 

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (grant number: 615 

61703069 and 62001312) and the Fundamental Research Funds for the Central Universities (grant number: DUT21GF301). 616 

 617 

Conflicts of Interest: The authors declare no conflict of interest.  618 

 619 

References 620 

1. Qaseem, A.; Kansagara, D.; Forciea, M. A.; Cooke, M.; Denberg, T. D.; Clinical Guidelines Comm, A. Management of Chronic 621 

Insomnia Disorder in Adults: A Clinical Practice Guideline From the American College of Physicians. Annals of Internal Medicine 622 

2016, 165, 2, 125-133. 623 

2. Hertenstein, E.; Feige, B.; Gmeiner, T.; Kienzler, C.; Spiegelhalder, K.; Johann, A.; Jansson-Froejmark, M.; Palagini, L.; Ruecker, 624 

G.; Riemann, D.; Baglioni, C. Insomnia as a predictor of mental disorders: A systematic review and meta-analysis. Sleep Medicine 625 

Reviews 2019, 43, 96-105. 626 

3. Zhang, J.; Ma, R. C. W.; Kong, A. P. S.; So, W. Y.; Li, A. M.; Lam, S. P.; Li, S. X.; Yu, M. W. M.; Ho, C. S.; Chan, M. H. M.; 627 

Zhang, B.; Wing, Y. K. Relationship of Sleep Quantity and Quality with 24-Hour Urinary Catecholamines and Salivary Awakening 628 

Cortisol in Healthy Middle-Aged Adults. Sleep 2011, 34, 2, 225-233. 629 

4. Perlis, M. L.; Merica, H.; Smith, M. T.; Giles, D. E. Beta EEG activity and insomnia. Sleep Medicine Reviews 2001, 5, 5, 365-376. 630 

5. Merica, H.; Blois, R.; Gaillard, J. M. Spectral characteristics of sleep EEG in chronic insomnia. European Journal of Neuroscience 631 

1998, 10, 5, 1826-1834. 632 

6. Kwan, Y.; Baek, C.; Chung, S.; Kim, T. H.; Choi, S. Resting-state quantitative EEG characteristics of insomniac patients with 633 

depression. International Journal of Psychophysiology 2018, 124, 26-32. 634 

7. Li, C.; Xia, L.; Ma, J.; Li, S.; Liang, S.; Ma, X.; Wang, T.; Li, M.; Wen, H.; Jiang, G. Dynamic functional abnormalities in 635 

generalized anxiety disorders and their increased network segregation of a hyperarousal brain state modulated by insomnia. Journal 636 

of Affective Disorders 2019, 246, 338-345. 637 

8. Zhao, W.; Van Someren, E. J. W.; Li, C.; Chen, X.; Gui, W.; Tian, Y.; Liu, Y.; Lei, X. EEG spectral analysis in insomnia disorder: A 638 

systematic review and meta-analysis. Sleep medicine reviews 2021, 59, 101457-101457. 639 

9. Corsi-Cabrera, M.; Rojas-Ramos, O. A.; del Río-Portilla, Y. Waking EEG signs of non-restoring sleep in primary insomnia patients. 640 

Clinical Neurophysiology 2016, 127, 3, 1813-1821. 641 

10. Spiegelhalder, K.; Regen, W.; Feige, B.; Holz, J.; Piosczyk, H.; Baglioni, C.; Riemann, D.; Nissen, C. Increased EEG sigma and beta 642 

power during NREM sleep in primary insomnia. Biological Psychology 2012, 91, 3, 329-333. 643 

11. Freedman, R. R. EEG power spectra in sleep-onset insomnia. Electroencephalography and Clinical Neurophysiology 1986, 63, 5, 644 

408-413. 645 

12. Perlis, M. L.; Kehr, E. L.; Smith, M. T.; Andrews, P. J.; Orff, H.; Giles, D. E. Temporal and stagewise distribution of high frequency 646 

EEC activity in patients with primary and secondary insomnia and in good sleeper controls. Journal of Sleep Research 2001, 10, 2, 647 

93-104. 648 

13. Imperatori, C.; Farina, B.; Adenzato, M.; Valenti, E. M.; Murgia, C.; Della Marca, G.; Brunetti, R.; Fontana, E.; Ardito, R. B. Default 649 

mode network alterations in individuals with high-trait-anxiety: An EEG functional connectivity study. Journal of Affective 650 

Disorders 2019, 246, 611-618. 651 

14. Sun, Y.; Lim, J.; Kwok, K.; Bezerianos, A. Functional cortical connectivity analysis of mental fatigue unmasks hemispheric 652 

asymmetry and changes in small-world networks. Brain and Cognition 2014, 85, 220-230. 653 

15. Onias, H.; Viol, A.; Palhano-Fontes, F.; Andrade, K. C.; Sturzbecher, M.; Viswanathan, G.; de Araujo, D. B. Brain complex network 654 

analysis by means of resting state fMRI and graph analysis: Will it be helpful in clinical epilepsy? Epilepsy & Behavior 2014, 38, 655 

71-80. 656 



22 of 24 

16. Bortoletto, M.; Veniero, D.; Thut, G.; Miniussi, C. The contribution of TMS–EEG coregistration in the exploration of the human 657 

cortical connectome. Neuroscience & Biobehavioral Reviews 2015, 49, 114-124. 658 

17. Park, H.-J.; Friston, K. J. Structural and Functional Brain Networks: From Connections to Cognition. Science 2013, 342, 6158, 1-8. 659 

18. Driver, J.; Blankenburg, F.; Bestmann, S.; Vanduffel, W.; Ruff, C. C. Concurrent brain-stimulation and neuroimaging for studies of 660 

cognition. Trends in Cognitive Sciences 2009, 13, 7, 319-327. 661 

19. Sohrabpour, A.; Cai, Z.; Ye, S.; Brinkmann, B.; Worrell, G.; He, B. Noninvasive electromagnetic source imaging of spatiotemporally 662 

distributed epileptogenic brain sources. Nature Communications 2020, 11, 1, 1-15. 663 

20. Killgore, W. D. S.; Schwab, Z. J.; Kipman, M.; DelDonno, S. R.; Weber, M. Insomnia-related complaints correlate with functional 664 

connectivity between sensory-motor regions. Neuroreport 2013, 24, 5, 233-240. 665 

21. Chen, M. C.; Chang, C.; Glover, G. H.; Gotlib, I. H. Increased insula coactivation with salience networks in insomnia. Biological 666 

Psychology 2014, 97, 1-8. 667 

22. Wang, T.; Yan, J.; Li, S.; Zhan, W.; Ma, X.; Xia, L.; Li, M.; Lin, C.; Tian, J.; Li, C.; Jiang, G. Increased insular connectivity with 668 

emotional regions in primary insomnia patients: a resting-state fMRI study. European Radiology 2017, 27, 9, 3703-3709. 669 

23. Horstmann, M.-T.; Bialonski, S.; Noennig, N.; Mai, H.; Prusseit, J.; Wellmer, J.; Hinrichs, H.; Lehnertz, K. State dependent 670 

properties of epileptic brain networks: Comparative graph-theoretical analyses of simultaneously recorded EEG and MEG. Clinical 671 

Neurophysiology 2010, 121, 2, 172-185. 672 

24. Nolte, G.; Bai, O.; Wheaton, L.; Mari, Z.; Vorbach, S.; Hallett, M. Identifying true brain interaction from EEG data using the 673 

imaginary part of coherency. Clinical Neurophysiology 2004, 115, 10, 2292-2307. 674 

25. Stam, C. J.; Nolte, G.; Daffertshofer, A. Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG 675 

with diminished bias from common sources. Human Brain Mapping 2007, 28, 11, 1178-1193. 676 

26. Palva, J. M.; Wang, S. H.; Palva, S.; Zhigalov, A.; Monto, S.; Brookes, M. J.; Schoffelen, J.-M.; Jerbi, K. Ghost interactions in 677 

MEG/EEG source space: A note of caution on inter-areal coupling measures. Neuroimage 2018, 173, 632-643. 678 

27. Yan, C.; He, Y. Driving and Driven Architectures of Directed Small-World Human Brain Functional Networks. Plos One 2011, 6, 8, 679 

1-16. 680 

28. Friston, K. J. Learning and inference in the brain. Neural Networks 2003, 16, 9, 1325-1352. 681 

29. Salinas, E.; Sejnowski, T. J. Correlated neuronal activity and the flow of neural information. Nature Reviews Neuroscience 2001, 2, 682 

8, 539-550. 683 

30. Wu, L.; Huang, M.; Zhou, F.; Zeng, X.; Gong, H. Distributed causality in resting-state network connectivity in the acute and 684 

remitting phases of RRMS. Bmc Neuroscience 2020, 21, 1, 1-8. 685 

31. Raichle, M. E.; MacLeod, A. M.; Snyder, A. Z.; Powers, W. J.; Gusnard, D. A.; Shulman, G. L. A default mode of brain function. 686 

Proceedings of the National Academy of Sciences of the United States of America 2001, 98, 2, 676-682. 687 

32. Ma, X.; Jiang, G.; Fu, S.; Fang, J.; Wu, Y.; Liu, M.; Xu, G.; Wang, T. Enhanced Network Efficiency of Functional Brain Network in 688 

Primary Insomnia Patients. Frontiers in Psychiatry 2018, 9, 1-11. 689 

33. Beattie, L.; Espie, C. A.; Kyle, S. D.; Biello, S. M. How are normal sleeping controls selected? A systematic review of 690 

cross-sectional insomnia studies and a standardized method to select healthy controls for sleep research. Sleep Medicine 2015, 16, 6, 691 

669-677. 692 

34. Goldstein, M. R.; Turner, A. D.; Dawson, S. C.; Segal, Z. V.; Shapiro, S. L.; Wyatt, J. K.; Manber, R.; Sholtes, D.; Ong, J. C. 693 

Increased high-frequency NREM EEG power associated with mindfulness-based interventions for chronic insomnia: Preliminary 694 

findings from spectral analysis. Journal of Psychosomatic Research 2019, 120, 12-19. 695 

35. Gurudath, N.; Riley, H. B., Drowsy Driving Detection by EEG Analysis Using Wavelet Transform and K-Means Clustering. In 9th 696 

International Conference on Future Networks and Communications, Shakshuki, E. M., Ed. 2014; Vol. 34, pp 400-409. 697 

36. Kar, S.; Bhagat, M.; Routray, A. EEG signal analysis for the assessment and quantification of driver's fatigue. Transportation 698 

Research Part F-Traffic Psychology and Behaviour 2010, 13, 5, 297-306. 699 



23 of 24 

37. Zhang, C.; Ma, J.; Zhao, J.; Liu, P.; Cong, F.; Liu, T.; Li, Y.; Sun, L.; Chang, R. Decoding Analysis of Alpha Oscillation Networks 700 

on Maintaining Driver Alertness. Entropy 2020, 22, 7. 701 

38. Zhang, C.; Sun, L.; Cong, F.; Kujala, T.; Ristaniemi, T.; Parviainen, T. Optimal imaging of multi-channel EEG features based on a 702 

novel clustering technique for driver fatigue detection. Biomedical Signal Processing and Control 2020, 62. 703 

39. Zhang, C.; Cong, F.; Kujala, T.; Liu, W.; Liu, J.; Parviainen, T.; Ristaniemi, T. Network Entropy for the Sequence Analysis of 704 

Functional Connectivity Graphs of the Brain. Entropy 2018, 20, 5. 705 

40. Zhang, G.; Zhang, C.; Cao, S.; Xia, X.; Tan, X.; Si, L.; Wang, C.; Wang, X.; Zhou, C.; Ristaniemi, T.; Cong, F. Multi-domain 706 

Features of the Non-phase-locked Component of Interest Extracted from ERP Data by Tensor Decomposition. Brain Topography 707 

2020, 33, 1, 37-47. 708 

41. Granger, C. W. J. Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica 1969, 37, 3, 709 

424-438. 710 

42. Barnett, L.; Seth, A. K. The MVGC multivariate Granger causality toolbox: A new approach to Granger-causal inference. Journal of 711 

Neuroscience Methods 2014, 223, 50-68. 712 

43. Shaw, L.; Mishra, S.; Routray, A., Generalised orthogonal partial directed coherence as a measure of neural information flow during 713 

meditation. In Advancements of Medical Electronics, Springer: Berlin, 2015; pp 137-148. 714 

44. Huang, D.; Ren, A.; Shang, J.; Lei, Q.; Zhang, Y.; Yin, Z.; Li, J.; von Deneen, K. M.; Huang, L. Combining Partial Directed 715 

Coherence and Graph Theory to Analyse Effective Brain Networks of Different Mental Tasks. Frontiers in Human Neuroscience 716 

2016, 10, 1-11. 717 

45. Schindler, K. A.; Bialonski, S.; Horstmann, M.-T.; Elger, C. E.; Lehnertz, K. Evolving functional network properties and 718 

synchronizability during human epileptic seizures. Chaos 2008, 18, 3, 1-6. 719 

46. Atay, F. M.; Biyikoglu, T. Graph operations and synchronization of complex networks. Physical Review E 2005, 72, 1, 1-7. 720 

47. Humphries, M. D.; Gurney, K. Network 'Small-World-Ness': A Quantitative Method for Determining Canonical Network 721 

Equivalence. Plos One 2008, 3, 4, 1-10. 722 

48. Tang, S.; Qing, P.; Ye, M.; Lei, X. In Altered Small-world Brain Network in Sleep Deprivation, 2016 International Conference on 723 

Mechanical, Control, Electric, Mechatronics, Information and Computer, 2016; Pandey, K. M.; Mustapha, F., Eds. DEStech 724 

Publications, Inc.: 2016; pp 38-44. 725 

49. Liao, X.; Vasilakos, A. V.; He, Y. Small-world human brain networks: Perspectives and challenges. Neuroscience and Biobehavioral 726 

Reviews 2017, 77, 286-300. 727 

50. Hu, X.; Yuan, S.l Xu, F. Scalp EEG classification using deep Bi-LSTM network for seizure detection. Computers in Biology and 728 

Medicine 2020, 124, 103919. 729 

51.  Zheng, X.; Chen, W. An Attention-based Bi-LSTM Method for Visual Object Classification via EEG. Biomedical Signal Processing 730 

and Control 2021, 63, 102174. 731 

52. Meme, Y.; Pietrone, R.; Cashmere, J. D.; Begley, A.; Miewald, J. M.; Germain, A.; Buysse, D. J. EEG Power During Waking and 732 

NREM Sleep in Primary Insomnia. Journal of Clinical Sleep Medicine 2013, 9, 10, 1031-1037. 733 

53. Riemann, D.; Spiegelhalder, K.; Feige, B.; Voderholzer, U.; Berger, M.; Perlis, M.; Nissen, C. The hyperarousal model of insomnia: 734 

A review of the concept and its evidence. Sleep Medicine Reviews 2010, 14, 1, 19-31. 735 

54. Ahmadlou, M.; Adeli, H. Functional community analysis of brain: A new approach for EEG-based investigation of the brain 736 

pathology. Neuroimage 2011, 58, 2, 401-408. 737 

55. Uehara, T.; Yamasaki, T.; Okamoto, T.; Koike, T.; Kan, S.; Miyauchi, S.; Kira, J.-i.; Tobimatsu, S. Efficiency of a "Small-World" 738 

Brain Network Depends on Consciousness Level: A Resting-State fMRI Study. Cerebral Cortex 2014, 24, 6, 1529-1539. 739 

56. Micheloyannis, S.; Pachou, E.; Stam, C. J.; Breakspear, M.; Bitsios, P.; Vourkas, M.; Erimaki, S.; Zervakis, M. Small-world 740 

networks and disturbed functional connectivity in schizophrenia. Schizophrenia Research 2006, 87, 1-3, 60-66. 741 



24 of 24 

57. Stam, C. J.; de Haan, W.; Daffertshofer, A.; Jones, B. F.; Manshanden, I.; van Walsum, A. M. v. C.; Montez, T.; Verbunt, J. P. A.; de 742 

Munck, J. C.; van Dijk, B. W.; Berendse, H. W.; Scheltens, P. Graph theoretical analysis of magnetoencephalographic functional 743 

connectivity in Alzheimers disease. Brain 2009, 132, 213-224. 744 

58. Stam, C. J.; Jones, B. F.; Nolte, G.; Breakspear, M.; Scheltens, P. Small-world networks and functional connectivity in Alzheimer's 745 

disease. Cerebral Cortex 2007, 17, 1, 92-99. 746 

 747 


