Bi-Lipschitz invariance of planar BV- and W1,1-extension domains
García-Bravo, M., Rajala, T., & Zhu, Z. (2022). Bi-Lipschitz invariance of planar BV- and W1,1-extension domains. Proceedings of the American Mathematical Society, 150(6), 2535-2543. https://doi.org/10.1090/proc/15878
Julkaistu sarjassa
Proceedings of the American Mathematical SocietyPäivämäärä
2022Oppiaine
Analyysin ja dynamiikan tutkimuksen huippuyksikköMatematiikkaAnalysis and Dynamics Research (Centre of Excellence)MathematicsTekijänoikeudet
© Authors, 2022
Julkaisija
American Mathematical Society (AMS)ISSN Hae Julkaisufoorumista
0002-9939Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/146531861
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
The first two authors were supported by the Academy of Finland, grant no. 314789. The third author was supported by the Academy of Finland via the Centre of Excellence in Analysis and Dynamics Research, grant no. 323960.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Planar Sobolev extension domains
Zhang, Yi (University of Jyväskylä, 2017)This doctoral thesis deals with geometric characterizations of bounded planar simply connected Sobolev extension domains. It consists of three papers. In the first and third papers we give full geometric characterizations ... -
Dimension estimates for the boundary of planar Sobolev extension domains
Lučić, Danka; Rajala, Tapio; Takanen, Jyrki (Walter de Gruyter GmbH, 2023)We prove an asymptotically sharp dimension upper-bound for the boundary of bounded simply-connected planar Sobolev W1,pW1,p -extension domains via the weak mean porosity of the boundary. The sharpness of our estimate is ... -
Sobolev homeomorphic extensions onto John domains
Koskela, Pekka; Koski, Aleksis; Onninen, Jani (Elsevier Inc., 2020)Given the planar unit disk as the source and a Jordan domain as the target, we study the problem of extending a given boundary homeomorphism as a Sobolev homeomorphism. For general targets, this Sobolev variant of the ... -
Dimension estimate for the two-sided points of planar Sobolev extension domains
Takanen, Jyrki (American Mathematical Society (AMS), 2023)In this paper we give an estimate for the Hausdorff dimension of the set of two-sided points of the boundary of bounded simply connected Sobolev W1,p-extension domain for 1 < p < 2. Sharpness of the estimate is shown by ... -
The volume of the boundary of a Sobolev (p,q)-extension domain
Koskela, Pekka; Ukhlov, Alexander; Zhu, Zheng (Elsevier, 2022)Let n≥2 and $1\leq q<p><\fz$. We prove that if Ω⊂Rn is a Sobolev (p,q)-extension domain, with additional capacitory restrictions on boundary in the case q≤n−1, n>2, then |∂Ω|=0. In the case 1≤q0.</p>
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.