Towards Seamless IoT Device-Edge-Cloud Continuum : Software Architecture Options of IoT Devices Revisited
Taivalsaari, A., Mikkonen, T., & Pautasso, C. (2022). Towards Seamless IoT Device-Edge-Cloud Continuum : Software Architecture Options of IoT Devices Revisited. In M. Bakaev, I.-Y. Ko, M. Mrissa, C. Pautasso, & A. Srivastava (Eds.), ICWE 2021 International Workshops : ICWE 2021 International Workshops, BECS and Invited Papers, Biarritz, France, May 18–21, 2021, Revised Selected Papers (pp. 82-98). Springer. Communications in Computer and Information Science, 1508. https://doi.org/10.1007/978-3-030-92231-3_8
Julkaistu sarjassa
Communications in Computer and Information ScienceToimittajat
Päivämäärä
2022Tekijänoikeudet
© 2022 Springer Nature Switzerland AG
In this paper we revisit a taxonomy of client-side IoT software architectures that we presented a few years ago. We note that the emergence of inexpensive AI/ML hardware and new communication technologies are broadening the architectural options for IoT devices even further. These options can have a significant impact on the overall end-to-end architecture and topology of IoT systems, e.g., in determining how much computation can be performed on the edge of the network. We study the implications of the IoT device architecture choices in light of the new observations, as well as make some new predictions about future directions. Additionally, we make a case for isomorphic IoT systems in which development complexity is alleviated with consistent use of technologies across the entire stack, providing a seamless continuum from edge devices all the way to the cloud.
Julkaisija
SpringerEmojulkaisun ISBN
978-3-030-92230-6Konferenssi
International Conference on Web EngineeringKuuluu julkaisuun
ICWE 2021 International Workshops : ICWE 2021 International Workshops, BECS and Invited Papers, Biarritz, France, May 18–21, 2021, Revised Selected PapersISSN Hae Julkaisufoorumista
1865-0929Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/102354635
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Examining Privacy and Trust Issues at the Edge of Isomorphic IoT Architectures : Case Liquid AI
Agbese, Mamia; Mäkitalo, Niko; Waseem, Muhammad; Mohanani, Rahul; Abrahamsson, Pekka; Mikkonen, Tommi (ACM, 2023)The growing domain of liquidity in computing extends its boundaries to include advancements like liquid artificial intelligence (AI). Liquid AI leverages liquid software using isomorphic Internet of Things (IoT) architecture ... -
LiquidAI : Towards an Isomorphic AI/ML System Architecture for the Cloud-Edge Continuum
Systä, Kari; Pautasso, Cesare; Taivalsaari, Antero; Mikkonen, Tommi (Springer Nature Switzerland, 2023)A typical Internet of Things (IoT) system consists of a large number of different subsystems and devices, including sensors and actuators, gateways that connect them to the Internet, cloud services, end-user applications ... -
Towards Liquid AI in IoT with WebAssembly : A Prototype Implementation
Kotilainen, Pyry; Heikkilä, Ville; Systä, Kari; Mikkonen, Tommi (Springer, 2023)An Internet of Things (IoT) system typically comprises numerous subsystems and devices, such as sensors, actuators, gateways for internet connectivity, cloud services, end-user applications, and analytics. Currently, these ... -
Liquifying Quantum-Classical Software-Intensive System of Systems
Aparicio-Morales, Álvaro M.; Haghparast, Majid; Mäkitalo, Niko; Garcia-Alonso, Jose; Berrocal, Javier; Stirbu, Vlad; Mikkonen, Tommi; Murillo, Juan Manuel (IEEE, 2024)Software-Intensive Systems are applications that use a high amount of computational resources for the execution of complex tasks in which a constant flow of information is needed. In the current conception of the computing ... -
Tiny Machine Learning for Resource-Constrained Microcontrollers
Immonen, Riku; Hämäläinen, Timo (Hindawi Limited, 2022)We use 250 billion microcontrollers daily in electronic devices that are capable of running machine learning models inside them. Unfortunately, most of these microcontrollers are highly constrained in terms of computational ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.