Näytä suppeat kuvailutiedot

dc.contributor.authorMuzalevskiy, Alexey
dc.contributor.authorNeittaanmäki, Pekka
dc.contributor.authorRepin, Sergey
dc.contributor.editorTuovinen, Tero T.
dc.contributor.editorPeriaux, Jacques
dc.contributor.editorNeittaanmäki, Pekka
dc.date.accessioned2023-01-09T08:33:27Z
dc.date.available2023-01-09T08:33:27Z
dc.date.issued2022
dc.identifier.citationMuzalevskiy, A., Neittaanmäki, P., & Repin, S. (2022). Generation of Error Indicators for Partial Differential Equations by Machine Learning Methods. In T. T. Tuovinen, J. Periaux, & P. Neittaanmäki (Eds.), <i>Computational Sciences and Artificial Intelligence in Industry : New Digital Technologies for Solving Future Societal and Economical Challenges</i> (pp. 63-96). Springer. Intelligent Systems, Control and Automation: Science and Engineering, 76. <a href="https://doi.org/10.1007/978-3-030-70787-3_6" target="_blank">https://doi.org/10.1007/978-3-030-70787-3_6</a>
dc.identifier.otherCONVID_100285542
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/84830
dc.description.abstractComputer simulation methods for models based on partial differential equations usually apply adaptive strategies that generate sequences of approximations for consequently refined meshes. In this process, error indicators play a crucial role because a new (refined) mesh is created by analysis of an approximate solution computed for the previous (coarser) mesh. Different error indicators exploit various analytical and heuristic arguments. The main goal of this paper is to show that effective indicators of approximation errors can be created by machine learning methods and presented by relatively simple networks. We use the “supervised learning” conception where sequences of teaching examples are constructed due to earlier developed tools of a posteriori error analysis known as “functional type error majorants”. Insensitivity to specific features of approximations is an important property of error majorants, which allows us to generate arbitrarily long series of diverse training examples without restrictions on the type of approximate solutions. These new (network) error indicators are compared with known indicators. The results show that after a proper machine learning procedure, we obtain a network with the same (or even better) quality of error indication level as the most efficient indicators used in classical computer simulation methods. The final trained network is approximately as effective as the gradient averaging error indicator, but has an important advantage because it is valid for a much wider set of approximate solutions.en
dc.format.extent275
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofComputational Sciences and Artificial Intelligence in Industry : New Digital Technologies for Solving Future Societal and Economical Challenges
dc.relation.ispartofseriesIntelligent Systems, Control and Automation: Science and Engineering
dc.rightsIn Copyright
dc.subject.othermesh adaptive methods
dc.subject.othermachine learning
dc.subject.othernetwork error indicator
dc.titleGeneration of Error Indicators for Partial Differential Equations by Machine Learning Methods
dc.typebook part
dc.identifier.urnURN:NBN:fi:jyu-202301091185
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/BookItem
dc.relation.isbn978-3-030-70786-6
dc.type.coarhttp://purl.org/coar/resource_type/c_3248
dc.description.reviewstatuspeerReviewed
dc.format.pagerange63-96
dc.relation.issn2213-8986
dc.type.versionacceptedVersion
dc.rights.copyright© Springer Nature Switzerland AG 2022
dc.rights.accesslevelopenAccessfi
dc.type.publicationbookPart
dc.subject.ysosimulointi
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.subject.ysovirheanalyysi
dc.subject.ysoapproksimointi
dc.subject.ysokoneoppiminen
dc.subject.ysomatemaattiset mallit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p4787
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
jyx.subject.urihttp://www.yso.fi/onto/yso/p9865
jyx.subject.urihttp://www.yso.fi/onto/yso/p4982
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p11401
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/978-3-030-70787-3_6
dc.type.okmA3


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright