Show simple item record

dc.contributor.authorAbidi, Kameyab Raza
dc.contributor.authorKoskinen, Pekka
dc.date.accessioned2023-01-05T10:38:27Z
dc.date.available2023-01-05T10:38:27Z
dc.date.issued2022
dc.identifier.citationAbidi, K. R., & Koskinen, P. (2022). Optimizing density-functional simulations for two-dimensional metals. <i>Physical review materials</i>, <i>6</i>(12), Article 124004. <a href="https://doi.org/10.1103/physrevmaterials.6.124004" target="_blank">https://doi.org/10.1103/physrevmaterials.6.124004</a>
dc.identifier.otherCONVID_164923110
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/84784
dc.description.abstractUnlike covalent two-dimensional (2D) materials like graphene, 2D metals have nonlayered structures due to their nondirectional, metallic bonding. While experiments on 2D metals are still scarce and challenging, density-functional theory (DFT) provides an ideal approach to predict their basic properties and assist in their design. However, DFT methods have rarely been benchmarked against metallic bonding at low dimensions. Therefore, to identify optimal DFT attributes for a desired accuracy, we systematically benchmark exchange-correlation functionals from LDA to hybrids and basis sets from plane waves to local basis with different pseudopotentials. With 1D chain, 2D honeycomb, 2D square, 2D hexagonal, and 3D bulk metallic systems, we compare the DFT attributes using bond lengths, cohesive energies, elastic constants, densities of states, and computational costs. Although today most DFT studies on 2D metals use plane waves, our comparisons reveal that local basis with often-used Perdew-Burke-Ernzerhof exchange correlation is quite sufficient for most purposes, while plane waves and hybrid functionals bring limited improvement compared to the greatly increased computational cost. These results ease the demands for generating DFT data for better interaction with experiments and for data-driven discoveries of 2D metals incorporating machine learning algorithms.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Physical Society (APS)
dc.relation.ispartofseriesPhysical review materials
dc.rightsIn Copyright
dc.subject.otherchemical bonding
dc.subject.otherdensity of states
dc.subject.otherelasticity
dc.titleOptimizing density-functional simulations for two-dimensional metals
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202301051139
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineFysiikkafi
dc.contributor.oppiaineOpettajien koulutuksen tutkimus (opetus, oppiminen, opettajuus, oppimispolut, koulutus)fi
dc.contributor.oppiaineKiihdytinfysiikka ja subatomäärinen fysiikkafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiainePhysicsen
dc.contributor.oppiaineTeacher education research (teaching, learning, teacher, learning paths, education)en
dc.contributor.oppiaineAccelerator and Subatomic Physicsen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2476-0455
dc.relation.numberinseries12
dc.relation.volume6
dc.type.versionpublishedVersion
dc.rights.copyright©2022 American Physical Society
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysokemialliset sidokset
dc.subject.ysotiheys
dc.subject.ysokimmoisuus
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p10130
jyx.subject.urihttp://www.yso.fi/onto/yso/p14628
jyx.subject.urihttp://www.yso.fi/onto/yso/p15864
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1103/physrevmaterials.6.124004
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright