Rippling of two-dimensional materials by line defects
Kähärä, T., & Koskinen, P. (2020). Rippling of two-dimensional materials by line defects. Physical Review B, 102(7), Article 075433. https://doi.org/10.1103/PhysRevB.102.075433
Julkaistu sarjassa
Physical Review BPäivämäärä
2020Tekijänoikeudet
© 2020 American Physical Society
Two-dimensional materials and their mechanical properties are known to be profoundly affected by rippling
deformations. However, although ripples are fairly well understood, less is known about their origin and controlled modification. Here, motivated by recent reports of laser-controlled creation of line defects in graphene, we
investigate how line defects could be used to control rippling in graphene and other two-dimensional materials.
By sequential multiscale coupling of density-functional tight-binding and continuum elasticity simulations,
we quantify the amount of rippling when the number and the cumulative length of the line defects increase.
Simulations show that elastic sheets with networks of line defects create rippling that induces considerable
out-of-plane rigidification and in-plane softening with nonlinear elastic behavior. We hope that these insights
help to guide experimental attempts to modify the mechanical properties of graphene and other two-dimensional
materials.
...
Julkaisija
American Physical Society (APS)ISSN Hae Julkaisufoorumista
2469-9950Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/41789603
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
We acknowledge the Academy of Finland for funding (Project No. 297115).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Limits of lateral expansion in two-dimensional materials with line defects
Koskinen, Pekka (American Physical Society (APS), 2021)The flexibility of two-dimensional (2D) materials enables static and dynamic ripples that are known to cause lateral contraction, shrinking of the material boundary. However, the limits of 2D materials' lateral expansion ... -
Polariton-assisted long-distance energy transfer between excitons in two-dimensional semiconductors
Pajunpää, Tuomas; Nigmatulin, Fedor; Akkanen, Suvi-Tuuli; Fernandez, Henry; Groenhof, Gerrit; Sun, Zhipei (American Physical Society (APS), 2024)Strong exciton-photon coupling offers an effective path for polariton-mediated long-distance coherent energy transfer (ET) between excitonic states. Here, we demonstrate strong coupling between excitons in WS2 monolayers, ... -
Modeling the mechanical behavior of carbon nanostructures
Korhonen, Topi (University of Jyväskylä, 2016)Low-dimensional nanostructures are expected to have vast number of applications in the future. Particularly large amount of research has been invested in the atomthick carbon membrane called graphene, which has become ... -
In vivo muscle mechanics during human locomotion : fascicle-tendinous tissue interaction during stretch-shortening cycle exercises
Ishikawa, Masaki (University of Jyväskylä, 2005)Masaki Ishikawan tutkimuksessa selvitettiin, kuinka lihasten ja jännerakenteiden yhteistoiminta hyödyntää elastista energiaa ihmisen liikkumisessa. Ulomman reisilihaksen ja kolmipäisen pohjelihaksen lihassolujen ja ... -
Discrete element model for viscoelastic materials with brittle fracture : applications on glacier dynamics
Riikilä, Timo (University of Jyväskylä, 2017)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.