Näytä suppeat kuvailutiedot

dc.contributor.authorSimões dos Reis, Glaydson
dc.contributor.authorSubramaniyam, Chandrasekar Mayandi
dc.contributor.authorDuarte Cárdenas, Angélica
dc.contributor.authorLarsson, Sylvia H.
dc.contributor.authorThyrel, Mikael
dc.contributor.authorLassi, Ulla
dc.contributor.authorGarcía-Alvarado, Flaviano
dc.date.accessioned2023-01-04T08:28:43Z
dc.date.available2023-01-04T08:28:43Z
dc.date.issued2022
dc.identifier.citationSimões dos Reis, G., Subramaniyam, C. M., Duarte Cárdenas, A., Larsson, S. H., Thyrel, M., Lassi, U., & García-Alvarado, F. (2022). Facile Synthesis of Sustainable Activated Biochars with Different Pore Structures as Efficient Additive-Carbon-Free Anodes for Lithium- and Sodium-Ion Batteries. <i>ACS Omega</i>, <i>7</i>(46), 42570-42581. <a href="https://doi.org/10.1021/acsomega.2c06054" target="_blank">https://doi.org/10.1021/acsomega.2c06054</a>
dc.identifier.otherCONVID_164727821
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/84757
dc.description.abstractThe present work elucidates facile one-pot synthesis from biomass forestry waste (Norway spruce bark) and its chemical activation yielding high specific surface area (SBET) biochars as efficient lithium- and sodium-ion storage anodes. The chemically activated biochar using ZnCl2 (Biochar-1) produced a highly mesoporous carbon containing 96.1% mesopores in its structure as compared to only 56.1% mesoporosity from KOH-activated biochars (Biochar-2). The latter exhibited a lower degree of graphitization with disordered and defective carbon structures, while the former presented more formation of ordered graphite sheets in its structure as analyzed from Raman spectra. In addition, both biochars presented a high degree of functionalities on their surfaces but Biochar-1 presented a pyridinic-nitrogen group, which helps improve its electrochemical response. When tested electrochemically, Biochar-1 showed an excellent rate capability and the longest capacity retentions of 370 mA h g–1 at 100 mA g–1 (100 cycles), 332.4 mA h g–1 at 500 mA g–1 (1000 cycles), and 319 mA h g–1 at 1000 mA g–1 after 5000 cycles, rendering as an alternative biomass anode for lithium-ion batteries (LIBs). Moreover, as a negative electrode in sodium-ion batteries, Biochar-1 delivered discharge capacities of 147.7 mA h g–1 at 50 mA g–1 (140 cycles) and 126 mA h g–1 at 100 mA g–1 after 440 cycles.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society (ACS)
dc.relation.ispartofseriesACS Omega
dc.rightsCC BY 4.0
dc.titleFacile Synthesis of Sustainable Activated Biochars with Different Pore Structures as Efficient Additive-Carbon-Free Anodes for Lithium- and Sodium-Ion Batteries
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202301041112
dc.contributor.laitosKokkolan yliopistokeskus Chydeniusfi
dc.contributor.laitosKokkola University Consortium Chydeniusen
dc.contributor.oppiaineSoveltavan kemian yksikköfi
dc.contributor.oppiaineThe Unit of Applied Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange42570-42581
dc.relation.issn2470-1343
dc.relation.numberinseries46
dc.relation.volume7
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 The Authors. Published by American Chemical Society
dc.rights.accesslevelopenAccessfi
dc.subject.ysohuokoisuus
dc.subject.ysobiomassa (teollisuus)
dc.subject.ysopuunkuori
dc.subject.ysografiitti
dc.subject.ysovihreä kemia
dc.subject.ysosivutuotteet
dc.subject.ysobiohiili
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p13541
jyx.subject.urihttp://www.yso.fi/onto/yso/p6170
jyx.subject.urihttp://www.yso.fi/onto/yso/p24500
jyx.subject.urihttp://www.yso.fi/onto/yso/p38635
jyx.subject.urihttp://www.yso.fi/onto/yso/p12401
jyx.subject.urihttp://www.yso.fi/onto/yso/p2861
jyx.subject.urihttp://www.yso.fi/onto/yso/p27826
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1021/acsomega.2c06054
jyx.fundinginformationThis research was funded by Bio4Energy, a Strategic Research Environment appointed by the Swedish government, and the Swedish University of Agricultural Sciences. The Raman measurement was performed at the Vibrational Spectroscopy Core Facility (ViSp), Chemical Biological Centre (KBC), Umeå University. The Umeå Core Facility for Electron Microscopy (UCEM-NMI node) at the Chemical Biological Centre (KBC), Umeå University, is gratefully acknowledged. Electrochemical characterization at Universidad San Pablo CEU was carried out with the financial support of MCIN/AEI/10.13039/501100011033 (Project PID2019-106662RB-C41).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0