Näytä suppeat kuvailutiedot

dc.contributor.authorDi Donato, Daniela
dc.contributor.authorFässler, Katrin
dc.contributor.authorOrponen, Tuomas
dc.date.accessioned2022-12-28T09:26:50Z
dc.date.available2022-12-28T09:26:50Z
dc.date.issued2022
dc.identifier.citationDi Donato, D., Fässler, K., & Orponen, T. (2022). Metric Rectifiability of H-regular Surfaces with Hölder Continuous Horizontal Normal. <i>International Mathematics Research Notices</i>, <i>2022</i>(22), 17909-17975. <a href="https://doi.org/10.1093/imrn/rnab227" target="_blank">https://doi.org/10.1093/imrn/rnab227</a>
dc.identifier.otherCONVID_104590255
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/84617
dc.description.abstractTwo definitions for the rectifiability of hypersurfaces in Heisenberg groups Hn have been proposed: one based on H-regular surfaces and the other on Lipschitz images of subsets of codimension-1 vertical subgroups. The equivalence between these notions remains an open problem. Recent partial results are due to Cole–Pauls, Bigolin–Vittone, and Antonelli–Le Donne. This paper makes progress in one direction: the metric Lipschitz rectifiability of H-regular surfaces. We prove that H-regular surfaces in Hn with α-Hölder continuous horizontal normal, α>0⁠, are metric bilipschitz rectifiable. This improves on the work by Antonelli–Le Donne, where the same conclusion was obtained for C∞-surfaces. In H1⁠, we prove a slightly stronger result: every codimension-1 intrinsic Lipschitz graph with an ϵ of extra regularity in the vertical direction is metric bilipschitz rectifiable. All the proofs in the paper are based on a new general criterion for finding bilipschitz maps between “big pieces” of metric spaces.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherOxford University Press
dc.relation.ispartofseriesInternational Mathematics Research Notices
dc.rightsIn Copyright
dc.titleMetric Rectifiability of H-regular Surfaces with Hölder Continuous Horizontal Normal
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202212285851
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange17909-17975
dc.relation.issn1073-7928
dc.relation.numberinseries22
dc.relation.volume2022
dc.type.versionacceptedVersion
dc.rights.copyright© The Author(s) 2021
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber321696
dc.relation.grantnumber288501
dc.relation.grantnumber713998
dc.relation.grantnumber713998
dc.relation.grantnumber322898
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/713998/EU//GeoMeG
dc.subject.ysodifferentiaaligeometria
dc.subject.ysometriset avaruudet
dc.subject.ysomittateoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p16682
jyx.subject.urihttp://www.yso.fi/onto/yso/p27753
jyx.subject.urihttp://www.yso.fi/onto/yso/p13386
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1093/imrn/rnab227
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuropean Commissionen
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuroopan komissiofi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramERC Starting Granten
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundingprogramERC Starting Grantfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationD.D.D. is partially supported by the Academy of Finland (Enrico Le Donne's grants 288501 `Geometry of sub-Riemannian groups' and 322898 `Sub-Riemannian geometry via metric-geometry and Lie-group theory') and by the European Research Council (Enrico Le Donne's ERC starting grant 713998 GeoMeG `Geometry of Metric Groups'); K.F and T.O are supported by the Academy of Finland (grants 321696 `Singular integrals, harmonic functions, and boundary regularity in Heisenberg groups' to K.F. and 309365 and 314172 `Quantitative rectifiability in Euclidean and non-Euclidean spaces' to T.O.).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright