dc.contributor.author | Di Donato, Daniela | |
dc.contributor.author | Fässler, Katrin | |
dc.contributor.author | Orponen, Tuomas | |
dc.date.accessioned | 2022-12-28T09:26:50Z | |
dc.date.available | 2022-12-28T09:26:50Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Di Donato, D., Fässler, K., & Orponen, T. (2022). Metric Rectifiability of H-regular Surfaces with Hölder Continuous Horizontal Normal. <i>International Mathematics Research Notices</i>, <i>2022</i>(22), 17909-17975. <a href="https://doi.org/10.1093/imrn/rnab227" target="_blank">https://doi.org/10.1093/imrn/rnab227</a> | |
dc.identifier.other | CONVID_104590255 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/84617 | |
dc.description.abstract | Two definitions for the rectifiability of hypersurfaces in Heisenberg groups Hn have been proposed: one based on H-regular surfaces and the other on Lipschitz images of subsets of codimension-1 vertical subgroups. The equivalence between these notions remains an open problem. Recent partial results are due to Cole–Pauls, Bigolin–Vittone, and Antonelli–Le Donne. This paper makes progress in one direction: the metric Lipschitz rectifiability of H-regular surfaces. We prove that H-regular surfaces in Hn with α-Hölder continuous horizontal normal, α>0, are metric bilipschitz rectifiable. This improves on the work by Antonelli–Le Donne, where the same conclusion was obtained for C∞-surfaces. In H1, we prove a slightly stronger result: every codimension-1 intrinsic Lipschitz graph with an ϵ of extra regularity in the vertical direction is metric bilipschitz rectifiable. All the proofs in the paper are based on a new general criterion for finding bilipschitz maps between “big pieces” of metric spaces. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Oxford University Press | |
dc.relation.ispartofseries | International Mathematics Research Notices | |
dc.rights | In Copyright | |
dc.title | Metric Rectifiability of H-regular Surfaces with Hölder Continuous Horizontal Normal | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202212285851 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 17909-17975 | |
dc.relation.issn | 1073-7928 | |
dc.relation.numberinseries | 22 | |
dc.relation.volume | 2022 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © The Author(s) 2021 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 321696 | |
dc.relation.grantnumber | 288501 | |
dc.relation.grantnumber | 713998 | |
dc.relation.grantnumber | 713998 | |
dc.relation.grantnumber | 322898 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/713998/EU//GeoMeG | |
dc.subject.yso | differentiaaligeometria | |
dc.subject.yso | metriset avaruudet | |
dc.subject.yso | mittateoria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16682 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27753 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13386 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1093/imrn/rnab227 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | European Commission | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | ERC Starting Grant | en |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundingprogram | ERC Starting Grant | fi |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | D.D.D. is partially supported by the Academy of Finland (Enrico Le Donne's grants 288501 `Geometry of sub-Riemannian groups' and 322898 `Sub-Riemannian geometry via metric-geometry and Lie-group theory') and by the European Research Council (Enrico Le Donne's ERC starting grant 713998 GeoMeG `Geometry of Metric Groups'); K.F and T.O are supported by the Academy of Finland (grants 321696 `Singular integrals, harmonic functions, and boundary regularity in Heisenberg groups' to K.F. and 309365 and 314172 `Quantitative rectifiability in Euclidean and non-Euclidean spaces' to T.O.). | |
dc.type.okm | A1 | |