dc.contributor.author | Paoli, John | |
dc.contributor.author | Pölönen, Ilkka | |
dc.contributor.author | Salmivuori, Mari | |
dc.contributor.author | Räsänen, Janne | |
dc.contributor.author | Zaar, Oscar | |
dc.contributor.author | Polesie, Sam | |
dc.contributor.author | Koskenmies, Sari | |
dc.contributor.author | Pitkänen, Sari | |
dc.contributor.author | Övermark, Meri | |
dc.contributor.author | Isoherranen, Kirsi | |
dc.contributor.author | Juteau, Susanna | |
dc.contributor.author | Ranki, Annamari | |
dc.contributor.author | Grönroos, Mari | |
dc.contributor.author | Neittaanmäki, Noora | |
dc.date.accessioned | 2022-12-27T08:31:39Z | |
dc.date.available | 2022-12-27T08:31:39Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Paoli, J., Pölönen, I., Salmivuori, M., Räsänen, J., Zaar, O., Polesie, S., Koskenmies, S., Pitkänen, S., Övermark, M., Isoherranen, K., Juteau, S., Ranki, A., Grönroos, M., & Neittaanmäki, N. (2022). Hyperspectral Imaging for Non-invasive Diagnostics of Melanocytic Lesions. <i>Acta Dermato-Venereologica</i>, <i>102</i>, Article adv00815. <a href="https://doi.org/10.2340/actadv.v102.2045" target="_blank">https://doi.org/10.2340/actadv.v102.2045</a> | |
dc.identifier.other | CONVID_164720096 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/84594 | |
dc.description.abstract | Malignant melanoma poses a clinical diagnostic problem, since a large number of benign lesions are excised to find a single melanoma. This study assessed the accuracy of a novel non-invasive diagnostic technology, hyperspectral imaging, for melanoma detection. Lesions were imaged prior to excision and histopathological analysis. A deep neural network algorithm was trained twice to distinguish between histopathologically verified malignant and benign melanocytic lesions and to classify the separate subgroups. Furthermore, 2 different approaches were used: a majority vote classification and a pixel-wise classification. The study included 325 lesions from 285 patients. Of these, 74 were invasive melanoma, 88 melanoma in situ, 115 dysplastic naevi, and 48 non-dysplastic naevi. The study included a training set of 358,800 pixels and a validation set of 7,313 pixels, which was then tested with a training set of 24,375 pixels. The majority vote classification achieved high overall sensitivity of 95% and a specificity of 92% (95% confidence interval (95% CI) 0.024–0.029) in differentiating malignant from benign lesions. In the pixel-wise classification, the overall sensitivity and specificity were both 82% (95% CI 0.005–0.005). When divided into 4 subgroups, the diagnostic accuracy was lower. Hyperspectral imaging provides high sensitivity and specificity in distinguishing between naevi and melanoma. This novel method still needs further validation. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Medical Journals Sweden AB | |
dc.relation.ispartofseries | Acta Dermato-Venereologica | |
dc.rights | CC BY-NC 4.0 | |
dc.subject.other | hyperspectral imaging | |
dc.subject.other | non-invasive diagnostic | |
dc.subject.other | machine learning | |
dc.subject.other | malignant melanoma | |
dc.title | Hyperspectral Imaging for Non-invasive Diagnostics of Melanocytic Lesions | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202212275829 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Computing, Information Technology and Mathematics | fi |
dc.contributor.oppiaine | Laskennallinen tiede | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.contributor.oppiaine | Computing, Information Technology and Mathematics | en |
dc.contributor.oppiaine | Computational Science | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0001-5555 | |
dc.relation.volume | 102 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Authors 2022 | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | diagnostiikka | |
dc.subject.yso | melanooma | |
dc.subject.yso | ihosyöpä | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | hyperspektrikuvantaminen | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p416 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p15128 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13613 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p39290 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc/4.0/ | |
dc.relation.doi | 10.2340/actadv.v102.2045 | |
jyx.fundinginformation | This study was funded by the Instrumentarium Foundation, by the Finnish Cancer foundation, by the Finnish Dermatopathology society, by the Hudfonden Foundation and by the Academy of Finland. | |